MA3H6 Questions 1.

Questions asked by students on 2014-01-13.

Background:

- 1. What is the definition of cokernel (I should know at this time)?
- 2. Where do simplicial complexes relate to Δ -complex structures? (i.e. visually they look the same). Then how do H_n^{Δ} relate to simplicial homologies
- 3. What is torsion?
- 4. Do elements of a Free Abelian Group have a unique expression?

Day of:

- 1. In what sense is the def. of a Δ -complex structure a "natural" def., i.e. is there an obvious deeper meaning other than "it works"?
- 2. (a) Can you always find a Δ -complex structure on a space?
 - (b) Can you create a Δ -complex structure for every space X? [Figure omitted.]
 - (c) Can you always find a Δ -complex-structure? if not, when?
 - (d) Is it always possible to construct a Δ -complex structure? If not, what else can you do to compute H_* ?
- 3. What should I do if struggling to identify a Δ -complex structure?
- 4. How does labelling of the vertices correspond to the tiling requirement of the Δ -complex definition (as it seems to)? (in other words: why do we label the vertices?)
- 5. How did you jump from knowing the number of cells of a particular dimension to the chain complex? (like in the \mathbb{T}^2 example)
- 6. Please explain the identification space of \mathbb{RP}^2 . I didn't understand the construction with the extra node in the circle.
- 7. What is the connection between Smith normal form and homology groups?

Connections:

- 1. Is there a space X for which $H_n^{\Delta}(X) \neq 0 \ \forall n \geq 1$?
- 2. What is the easiest way to approach a problem involving S^3 ? How can you present the space on paper?

2014-01-13

MA3H6 Questions 1.

3. Near the beginning you mentioned how much easier homology groups are to compute than fundamental groups. Is there a way to "recover" information which we would get with π_1 but not necessarily the H_*^{Δ} ?

- 4. If 2 top. spaces have the same homology group structure, does this mean they are homeomorphic?
- 5. Are there any useful dualities or symmetries of the complexes obtained from taking homology groups (either in general, or more specialised cases)?
- 6. What is the point of working out H_n^{Δ} ? What does this course lead to?

Administration:

1. Will there be solutions to all the Exercises put online?

2014-01-13