MA3H6 Exercise sheet 1. Please let me (Saul) know if any of the problems are unclear or have typos. Please submit a single worked exercise at the beginning of the Monday support class. If you collaborate with other students, please include their names. **Exercise 1.1.** Show that the map $f: [0,1) \to S^1$, given by $f(t) = \exp(2\pi i t) = \cos(2\pi t) + i \sin(2\pi t)$, is a continuous bijection, but is not a homeomorphism. **Exercise 1.2.** Arrange the capital letters of the Roman alphabet, ABCDEFGHI-JKLMNOPQRSTUVWXYZ thought of as graphs, into homeomorphism classes. Briefly explain your reasoning, including your choice of font. **Exercise 1.3.** Recall that B^n is the closed unit ball in \mathbb{R}^n while S^n is the unit sphere in \mathbb{R}^{n+1} . Show that no two of the interval B^1 , the circle S^1 , the disk B^2 , and two-sphere S^2 are homeomorphic. Exercise 1.4. As in Exercise 1.2 classify the capital letters of the alphabet into homeomorphism types; this time, we think of the letters as small two-dimensional neighborhoods of the given planar graphs. **Exercise 1.5.** Let $A: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the homomorphism given by the following matrix. $$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$ Compute the kernel, image, and cokernel of A. **Exercise 1.6.** [Reading exercise. Do not turn in.] The real projective space \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1} . This can also be described as the quotient of S^n by the antipodal map. The group SO(n) is the group of orthogonal n-by-n matrices with determinant one. - Show that SO(2) is homeomorphic to S^1 . - Show that SO(3) is homeomorphic to \mathbb{RP}^3 . It follows that $\pi_1(SO(3)) \cong \mathbb{Z}/2\mathbb{Z}$. Describe the generator of $\pi_1(SO(3))$ directly, and explain why traversing this loop twice gives a homotopically trivial loop. - [Hard.] Recall that S^3 is a group via its identification with the unit quaternions $U\mathbb{H}$. Describe, in terms of the natural coordinates, the group homomorphism $U\mathbb{H} \to SO(3)$ that corresponds to the quotient map $S^3 \to \mathbb{RP}^3$. 2014-01-06