MA3F1 Exercise sheet 5.

Please let me (Saul) know if any of the problems are unclear or have typos. Please turn in a solution to Exercise 5.3, or to the first two parts of Exercise 5.5, or to Exercise 5.6 by 14:00 on 2017-11-09 in front of the undergraduate office. If you collaborate with other students, please include their names.

Exercise 5.1. Define the punctured plane to be $\mathbb{C}^{\times} = \mathbb{C} - \{0\}$. Show that the map $p \colon \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ defined by $p(z) = z^2$ is a covering map. Explain why the squaring map on \mathbb{C} itself is not a covering map.

Exercise 5.2. [Exercise 12, page 39, of Hatcher.] Show that for every homomorphism $\phi: \pi_1(S^1, 1) \to \pi_1(S^1, 1)$ there is a pointed map $f: (S^1, 1) \to (S^1, 1)$ so that $\phi = f_*$. In other words, f induces ϕ .

Exercise 5.3. Suppose that $p: \widetilde{X} \to X$ is a covering map, and suppose that \widetilde{X} is path-connected. Show that $\tau \in \operatorname{Deck}(p)$ fixes a point of \widetilde{X} if and only if $\tau = \operatorname{Id}_{\widetilde{X}}$.

Exercise 5.4. Suppose that $p: \mathbb{R} \to S^1$ is the usual covering map, namely $p(t) = \exp(2\pi i t)$. Give a complete proof that $\operatorname{Deck}(p) \cong \mathbb{Z}$.

Exercise 5.5. [Exercise 16, page 39, of Hatcher.] Show that there is no retraction $r: X \to A$ in any of the following cases. (Give short justifications of any fundamental group computations.)

- $X = \mathbb{R}^3$ with A any subspace homeomorphic to S^1 .
- $X = S^1 \times D^2$ with A its boundary torus $S^1 \times S^1$.
- $X = S^1 \times D^2$ and A the circle shown in the figure. [See book.]
- $X = D^2 \vee D^2$ with A its boundary $S^1 \vee S^1$.
- X a disk with two points on its boundary identified and A its boundary $S^1 \vee S^1$.
- \bullet X the Möbius band and A its boundary circle.

Exercise 5.6. [Hard.] We say that a space X has the *fixed point property* if every map $f: X \to X$ has a fixed point. Define the *tripod* to be the set

$$T = \{r \exp(2\pi i k/3) \in \mathbb{C} \mid r \in [0, 1], k \in \{0, 1, 2\}\}.$$

So T is a connected graph with three edges and four vertices. Prove the tripod has the fixed point property.

2015-11-02