MA3H6 Exercise sheet 3.

Please let me (Saul) know if any of the problems are unclear or have typos. Please turn a solution to one of Exercise 3.2, Exercise 3.3, or Exercise 3.10 by 14:00 Wednesday after next, in front of the undergraduate office. If you collaborate with other students, please include their names.

Exercise 3.1. Compute the simplicial homology groups of the two-sphere, directly from the definitions, using the Δ -complex structure coming from the boundary of a tetrahedron. Provide clearly labelled figures.

Exercise 3.2. Suppose that X is a non-empty path-connected space, equipped with a Δ -complex structure. Show, directly from the definitions, that $H_0^{\Delta}(X) \cong \mathbb{Z}$. (You may assume without proof that the one-skeleton is path-connected.)

Exercise 3.3. Suppose that X is a finite, path-connected, one-dimensional Δ -complex: that is, a finite connected graph. Suppose that X has E edges and V vertices. Compute the simplicial homology groups of X.

Exercise 3.4. Compute the reduced singular homology groups of a point, directly from the definitions.

Exercise 3.5. [Challenge.] Compute the singular homology groups of the circle S^1 , directly from the definitions.

Exercise 3.6. Compute the singular homology groups of the plane \mathbb{R}^2 , minus n points. Reference any theorems from Hatcher that you use.

Exercise 3.7. Suppose $f_{\#}: \mathcal{C}_* \to \mathcal{D}_*$ is a *chain map* of chain complexes: a sequence of group homomorphisms $\{f_n\}$ so that $\partial_n^D \circ f_n = f_{n-1} \circ \partial_n^C$. The short-hand for this is $\partial f_{\#} = f_{\#}\partial$. Show $f_{\#}$ induces well-defined homomorphisms $f_*: H_*(\mathcal{C}) \to H_*(\mathcal{D})$ on homology.

Exercise 3.8.

- Suppose that X is a Δ -complex. Let $i_k \colon \mathcal{C}_k^{\Delta}(X) \to \mathcal{C}_k^s(X)$ be the injective homomorphisms sending a simplex of the Δ -complex to the corresponding singular simplex. Show that $i_{\#} = \{i_k\}$ is a chain map. (Later in the course we will prove $i_{\#}$ induces an isomorphism from simplicial homology to singular.)
- Suppose that $f: X \to Y$ is a map of topological spaces. For any singular n-simplex $\sigma: \Delta^n \to X$ define $f_n(\sigma) = f \circ \sigma$. Extend linearly to get a homomorphism $f_n: C_n^s(X) \to C_n^s(Y)$. Show that $f_\# = \{f_n\}$ is a chain map.

Exercise 3.9. [Hatcher problem 12, page 132.] Two chain maps $f_{\#}$ and $g_{\#}$ from C_* to \mathcal{D}_* are *chain homotopic* if there is a sequence of homomorphisms $P_n: C_n \to D_{n+1}$ so that

$$\partial_{n+1}^D \circ P_n + P_{n-1} \circ \partial_n^C = g_n - f_n$$

for all n. The short-hand for this is $\partial P + P \partial = g_{\#} - f_{\#}$. We call P a *chain homotopy* and write $f_{\#} \sim g_{\#}$. Show chain homotopy of chain maps is an equivalence relation.

2017-01-23

MA3H6 Exercise sheet 3.

Exercise 3.10. We say two chain complexes C_* and D_* are chain homotopy equivalent if there are chain maps $f_\#: C_* \to \mathcal{D}_*$ and $g_\#: \mathcal{D}_* \to \mathcal{C}_*$ so that $g_\# \circ f_\# \sim \operatorname{Id}_C$ and $f_\# \circ g_\# \sim \operatorname{Id}_D$.

Let C_* be the chain complex with $C_1 = C_0 = \mathbb{Z}$, all other chain groups trivial, and with $\partial_1^C(m) = 2m$. Let \mathcal{D}_* be the chain complex with $D_1 = D_0 = \mathbb{Z}^2$, all other chain groups trivial, and with $\partial_1^D(x,y) = (x-y,x+y)$. Prove C_* and D_* are chain homotopy equivalent.

2017-01-23