Please let me (Saul) know if any of the problems are unclear or have typos. Please turn a solution to one of Exercise 9.1, Exercise 9.4, or Exercise 9.7 by 14:00 on 2017-03-15, in front of the undergraduate office. If you collaborate with other students, please include their names.

Exercise 9.1. "Let $p(z) = z^3$ and $q(z) = z^2$; these are polynomials defined on the complex plane. Let f(z,t) = (1-t)p(z) + tq(z), for $t \in [0,1]$. Thus f is a homotopy from p to q. Let P, Q, and F be the extensions of p, q, and f to the one-point compactification $S^2 = \mathbb{C} \cup \{\infty\}$. Thus $\deg(P) = 3$ and $\deg(Q) = 2$. Also, F is a homotopy from P to Q. Deduce $\deg(P) = \deg(Q)$, and so 3 = 2."

Verify the true statements and disprove the false ones.

Exercise 9.2. Fix $\{a_k\}_{k=0}^d \subset \mathbb{R}$ with $a_d \neq 0$. Define $p: \mathbb{R}^1 \to \mathbb{R}^1$ by $p(x) = \sum a_k x^k$. Let *P* be the extension of *p* to the one-point compactification $S^1 = \mathbb{R}^1 \cup \{\infty\}$. Check *P* is continuous. Compute the degree of *P*.

Exercise 9.3. [Hatcher page 137, Proposition 2.33.] Recalling the definitions from Exercise 6.6, if $f: X \to X$ is a map then define $Sf: SX \to SX$ to be the *suspension* of f: that is, the self-map of SX induced by $f \times \text{Id}$. Prove, when X is a sphere, that $\deg(f) = \deg(Sf)$.

Exercise 9.4. We say a map $f: S^n \to S^n$ is even if f(-x) = f(x) for all $x \in S^n$. Prove if $f: S^n \to S^n$ is even then deg(f) is even. (You may restrict to the cases where n = 1 and n = 2.)

Exercise 9.5. [Borsuk. Hard.] We call a map g odd if for all x we have g(-x) = -g(x). Show that the following are equivalent.

- 1. For any map $f: S^n \to \mathbb{R}^n$ there is a point $x \in S^n$ so that f(-x) = f(x).
- 2. For any odd map $g: S^n \to \mathbb{R}^n$ there is a point $x \in S^n$ so that g(x) = 0.
- 3. There is no odd map $h: S^n \to S^{n-1}$.
- 4. There is no map $k \colon B^n \to S^{n-1}$ so that $k | S^{n-1}$ is odd.

Now deduce one (and so all) of these from the "odd theorem": an odd map $f: S^n \to S^n$ has odd degree.

Exercise 9.6. Set $C = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = z^2\}$. For all points $p \in C$ compute the local homology groups of C at p.

Exercise 9.7. Recalling the definitions from Exercise 6.6, show that the cone $C(\mathbb{RP}^2)$ is not a three-manifold with boundary. (You may use without proof the fact that C(Z) is contractible, for any space Z.)