
MA3H6 Solutions 2.

Please send me (Saul) any corrections and/or improvements to the exercises or their
solutions.

Exercise 2.8. [Hard.] Compute the simplicial homology groups of ∆n, the n–simplex
equipped with the natural ∆–complex structure.

Later in the module, once we have developed more machinery, we will be able to give
a “simple” proof. Nonetheless, there are some direct approaches. Here is one relying on
the fact that the simplex is a cone.

Solution of Exercise 2.8. Set X = ∆n = [e0, e1, . . . , en]. We claim that H∆
0 (X) ∼= Z and

H∆
k (X) ∼= 0 if k > 0. That is, ∆n has the same homology groups as a point.

Let I ⊂ {0, 1, . . . , n} be a subset. If I is non-empty we define σI = [ei]i∈I . If 0 ∈ I
then we call σI an upper face of X. (That is, if e0 ∈ σI .) If 0 /∈ I then we call σI a lower
face.

We now define I ′, as follows.

I ′ =

{
I − {0}, if 0 ∈ I
I ∪ {0}, if 0 /∈ I

If neither I nor I ′ are empty then we say that σI and σI′ are paired. Note that [e0] is
the only simplex not paired with some other simplex.

Suppose that σI′ is upper. Then σI is lower and is the first term in the sum given by
∂σI′ . Furthermore, σI is the only lower face appearing in the sum. Finally, σI′ is the
only upper simplex having σI in its boundary.

Let Cup
k , C low

k ⊂ C∆
k (X) be the subgroups generated by the upper and lower k–faces,

respectively. Since every simplex is either upper or lower, but not both, we deduce
C∆

k (X) = Cup
k ⊕ C low

k . Let βk : C∆
k (X)→ C low

k be the associated projection. Note that
applying βk ◦ ∂k+1 to an upper face gives the paired lower face. Since the pairing is a
bijection (for k > 0) we deduce that βk ◦ ∂k+1|Cup

k+1 is an isomorphism, for all k > 0.

Claim. For all k we have ∂k(C low
k ) ⊂ ∂k(Cup

k ).

Proof. Suppose that σI is a lower k–face. We must prove that ∂kσI ∈ ∂k(Cup
k ). By the

remarks above (in the fourth paragraph of the proof), ∂k+1σI′ = σI + c for some c ∈ Cup
k .

By Lemma 2.1 [Hatcher] we have ∂k∂k+1σI′ = 0. Thus ∂kσI = −∂kc.

We deduce that C∆
k = Cup

k ⊕ Im(∂k+1). Since ∂k|Cup
k is injective, we deduce that

Ker(∂k) is equal to Im(∂k+1), as long as k > 0. For k = 0, there is exactly one zero-face
not paired with an upper one-face, namely [e0]. We deduce that H∆

0 (X) ∼= Z while
H∆

k (X) ∼= 0 for k > 0.

Exercise 2.10. Let X = RP2. Give a ∆–complex structure on X. Now compute the
simplicial homology groups H∆

∗ (X).
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Figure 2.11: Left: The exploded ∆–complex structure for RP2 with the one-simplices
v, w, a, and b shown twice. Right: The identification space. On both sides, the arrows
indicate both orientation and gluings.

Solution. See Figure 2.11 (right) for picture of the ∆–complex structure on X. The
simplices are denoted by U , L (triangles), a, b, c (edges), and v, w (vertices). Note that
the orientations on the edges of a ∆–complex always point from the smaller vertex and
towards the larger. In this example, if we reverse the direction of the edge a then we
get one of the usual identification spaces giving RP2; thus X is homeomorphic to RP2.
Note, however, that that “usual” orientation of a prevents the cell-complex from having
a ∆–complex structure.

In what follows, if A is an abelian group and B ⊂ A is subset, then we use 〈B〉 to
denote the subgroup of A generated by B.

The above ∆–complex structure on X has the following chain groups.

C∆
2 (X) = 〈U,L〉 ∼= Z2

C∆
1 (X) = 〈a, b, c〉 ∼= Z3

C∆
0 (X) = 〈v, w〉 ∼= Z2

We now compute the boundary of every simplex σ, using the orientation of the edges to
deduce the order of the vertices in σ.

∂2U = c− a+ b = −a+ b+ c

∂2L = c− b+ a = a− b+ c

∂1a = v − w
∂1b = v − w
∂1c = v − v = 0

∂0v = 0

∂0w = 0

Note that Ker(∂0) = 〈v, w〉 = C∆
0 (X). We change basis to arrange 〈v, w〉 =

〈v − w,w〉 ∼= Z2. On the other hand Im(∂1) = 〈v − w〉 ∼= Z. Thus

H∆
0 (X) =

〈v − w,w〉
〈v − w〉

∼= Z.
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Note that Ker(∂1) = 〈a− b, c〉. [To prove this, suppose that p, q, and r are any integers
and suppose that d = pa+ qb+ rc is a one-cycle. Thus ∂d = (p+ q)(v − w) = 0 and so
q = −p. Thus d = p(a−b)+rc.] We change basis to arrange Ker(∂1) = 〈a− b+ c, c〉 ∼= Z2.
On the other hand we may change basis to arrange Im(∂2) = 〈−a+ b+ c, a− b+ c〉 =
〈2c, a− b+ c〉 = 〈a− b+ c, 2c〉 ∼= Z2. Thus

H∆
1 (X) =

〈a− b+ c, c〉
〈a− b+ c, 2c〉

∼= Z/2Z.

Note that Ker(∂2) = 0. [To prove this, suppose that p and q are any integers and
suppose that D = pU + qL is a two-cycle. Then ∂D = p(−a+ b+ c) + q(a− b+ c) =
(−p+ q)a+ (p− q)b+ (p+ q)c = 0. Thus p− q = 0 and p+ q = 0. The only solution in
integers is p = q = 0. Thus D = 0, as desired.] Thus

H∆
2 (X) = 0

and we are done.

The computations in Exercise 2.10 amount to finding matrix forms for each boundary
operator, putting these matrices in Smith normal form, and tracking the change of bases
that occur. For a very readable discussion of how to compute homology groups using
Smith normal form, see Section 17.6 of [http://jeffe.cs.illinois.edu/teaching/
comptop/2009/notes/homology.pdf].
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