Please send me (Saul) any corrections and/or improvements to the exercises or their solutions.

Exercise 5.10. Compute the reduced simplicial homology groups of Δ^n , the *n*-simplex equipped with the natural Δ -complex structure.

This is a slight variant on Exercise 2.8. Using a chain homotopy we can give a more "conceptual" proof.

Solution of Exercise 5.10. Set $X = \Delta^n = [e_0, e_1, \dots, e_n]$. To show that $H^{\Delta}_*(X) \cong 0$ it suffices to prove that the augmented chain complex $C_* = \widetilde{C}^{\Delta}_*(X)$ is exact.

Let $I \subset \{0, 1, \ldots, n\}$ be a subset. We define $\sigma_I = [e_i]_{i \in I}$, where the order of the vertices comes from the order of the indices. If I is empty, then σ_I is the generator of $C_{-1} \cong \mathbb{Z}$. We define I' as follows.

$$I' = \begin{cases} I - \{0\}, & \text{if } 0 \in I \\ I \cup \{0\}, & \text{if } 0 \notin I \end{cases}$$

Note that I'' = I. We define $P \colon C_k \to C_{k+1}$ by taking

$$P(\sigma_I) = \begin{cases} 0, & \text{if } 0 \in I \\ \sigma_{I'}, & \text{if } 0 \notin I \end{cases}$$

and extending linearly.

Claim. P is a chain homotopy from the identity to the zero map. That is, $\partial P + P \partial = \mathbb{1}$.

Proof. It suffices to check this on a basis element σ_I . Suppose that $i_0 < i_1 < \ldots < i_k$ are the elements of I. There are two cases: either 0 lies in I or it does not. Suppose that $0 \in I$. We compute:

$$(\partial P + P\partial)\sigma_I = P\partial\sigma_I \qquad [P(\sigma_I) = 0]$$

$$= P\left(\sigma_{I'} + \sum_{j>0} (-1)^j \sigma_{I-\{i_j\}}\right) \qquad [\text{definition of } \partial]$$

$$= \sigma_{I} + \sum_{j>0} (-1)^{j} P(\sigma_{I-\{i_{j}\}}) \qquad [P(\sigma_{I'}) = \sigma_{I}]$$

$$[definition of P]$$

Now suppose that $0 \notin I$. We compute:

 $= \sigma_I$

$$(\partial P + P\partial)\sigma_I = \partial\sigma_{I'} + P\partial\sigma_I \qquad [P(\sigma_I) = \sigma_{I'}]$$
$$= \sigma_I + \sum_{j\geq 0} (-1)^{j+1}\sigma_{I'-\{i_j\}} + P\left(\sum_{j\geq 0} (-1)^j\sigma_{I-\{i_j\}}\right) \qquad [\text{definition of }\partial]$$
$$= \sigma_I + \sum_{j\geq 0} (-1)^{j+1}\sigma_{I'-\{i_j\}} + \sum_{j\geq 0} (-1)^j\sigma_{I'-\{i_j\}} \qquad [\text{definition of }P]$$
$$= \sigma_I \qquad [\text{cancellation}]$$

2017-02-12

This proves the claim.

Now suppose that $z \in Z_k$ is a cycle. Define c = Pz. We compute:

$$\begin{aligned} \partial c &= \partial P z & [\text{definition of } c] \\ &= z - P \partial z & [\partial P + P \partial = \mathbb{1}] \\ &= z & [z \text{ is a cycle}] \end{aligned}$$

Thus z is a boundary, the chain complex C_* is exact, and we are done.

Exercise 5.11. Compute the reduced simplicial homology groups of S^{n-1} , using the Δ -complex structure coming from the homeomorphism $S^{n-1} \cong \partial \Delta^n$.

Solution. Define

$$A_* = \widetilde{C}^{\Delta}_*(\partial \Delta^n), \qquad B_* = \widetilde{C}^{\Delta}_*(\Delta^n), \qquad C_* = C^{\Delta}_*(\Delta^n, \partial \Delta^n).$$

We are asked to compute the homology groups of A_* . From the definition of C_* we know that

$$0 \longrightarrow A_* \longrightarrow B_* \longrightarrow C_* \longrightarrow 0$$

is a short exact sequence. Thus there is an exact triangle of homology groups. In Exercise 5.10 we showed that $H_*(B_*) = 0$. Exactness of the triangle now implies that $H_k(C_*) \cong H_{k-1}(A_*)$, for all k.

Note that the complex C_* has exactly one non-zero term, namely $C_n \cong \mathbb{Z}$. Thus $H_k(C_*) = \mathbb{Z}$ if k = n and is zero otherwise. We deduce that $H_k(A_*) = \mathbb{Z}$ if k = n - 1 and is zero otherwise.