Please send me (Saul) any corrections and/or improvements to the exercises or their solutions.

Exercise 6.7. Let X be a copy of the Klein bottle, minus a small open disk. Let $A = \partial X$ be the topological boundary of X.

- Find a Δ -complex structure on X and thus on A.
- Using this, compute the simplical homology groups of A and of X. Find the homomorphism on homology induced by the inclusion of A into X.
- Compute the relative homology groups of the pair (X, A).

This is a slight variant on Exercise 6.1.

Solution of Exercise 6.7. We first build a Δ -complex structure for X.

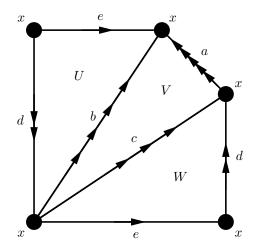


Figure 6.8: The Δ -complex structure for X has three two-simplices U, V, W, has five onesimplices a, b, c, d, e, and has one zero-simplex x. The arrows indicate both orientation and glueings.

Note that A is the subcomplex containing the zero-simplex x and the one-simplex a. We obtain the following nontrivial chain groups.

$$C_{2}^{\Delta}(X) = \langle U, V, W \rangle \cong \mathbb{Z}^{3}$$

$$C_{1}^{\Delta}(X) = \langle a, b, c, d, e \rangle \cong \mathbb{Z}^{5}$$

$$C_{0}^{\Delta}(X) = \langle x \rangle \cong \mathbb{Z}$$

$$C_{0}^{\Delta}(A) = \langle x \rangle \cong \mathbb{Z}$$

$$C_{0}^{\Delta}(A) = \langle x \rangle \cong \mathbb{Z}$$

We now record the image of the boundary operator acting on each simplex.

$$\partial_1 a = 0$$

$$\partial_2 U = d + b - e \qquad \qquad \partial_1 b = 0$$

$$\partial_2 V = c + a - b \qquad \qquad \partial_1 c = 0 \qquad \qquad \partial_0 x = 0$$

$$\partial_2 W = e + d - c \qquad \qquad \partial_1 d = 0$$

$$\partial_1 e = 0$$

Since the Δ -complex structure on A is the usual structure on the circle, we find that $H_1^{\Delta}(A) = \langle [a] \rangle \cong \mathbb{Z}$ and $H_0^{\Delta}(A) = \langle [x] \rangle \cong \mathbb{Z}$.

Note that $\operatorname{Ker}(\partial_0) = \langle x \rangle = C_0^{\Delta}(X)$ while $\operatorname{Im}(\partial_1) = 0$. Thus $H_0^{\Delta}(X) = \langle [x] \rangle \cong \mathbb{Z}$. The induced homomorphism $H_0^{\Delta}(A) \to H_0^{\Delta}(X)$ is thus the identity, because both groups are generated by [x].

Note that $\operatorname{Ker}(\partial_1) = C_1^{\Delta}(X)$. We change basis to obtain

Ke

$$\begin{aligned} \mathbf{r}(\partial_1) &= \langle a, b, c, d, e \rangle \\ &= \langle a, d+b-e, c, d, e \rangle \\ &= \langle a, d+b-e, e+d-c, d, e \rangle \\ &= \langle a+2d, d+b-e, e+d-c, d, e \rangle \end{aligned}$$

We can also change basis in $C_2^{\Delta}(X)$ to obtain $\langle U, V, W \rangle = \langle U, U + V + W, W \rangle$ with image $\operatorname{Im}(\partial_2) = \langle a + 2d, d + b - e, e + d - c \rangle$. Thus $H_1^{\Delta}(X) = \langle [d], [e] \rangle \cong \mathbb{Z}^2$. Also, since $\operatorname{Im}(\partial_2)$ contains three elements of a basis, we deduce that ∂_2 is injective. So $\operatorname{Ker}(\partial_2) = 0 = H_2^{\Delta}(X)$. We also record the fact that, in $H_1^{\Delta}(X)$, we have [a + 2d] = 0, and so [a] = -2[d].

The induced homomorphism $H_0^{\Delta}(A) \to H_0^{\Delta}(X)$ takes [a] to -2[d] and thus is injective.

We now turn to the computation of $H^{\Delta}_{*}(X, A)$. Note that $C^{\Delta}_{0}(X, A) \cong 0$ because the induced homomorphism on chains is surjective. Thus $H^{\Delta}_{0}(X, A) = 0$. On the other hand

$$C_{1}^{\Delta}(X, A) = \langle [b], [c], [d], [e] \rangle$$

= $\langle [d + b - e], [c], [d], [e] \rangle$
= $\langle [d + b - e], [e + d - c], [d], [e] \rangle$

Here the square brackets denote relative chains, not homology classes. Note that ∂_1 induces the zero homomorphism while ∂_2 induces a homomorphism with image $\langle [2d], [d+b-e], [e+d-c] \rangle$. Thus $H_1^{\Delta}(X, A) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}$ where the first factor is generated by [d] and the second is generated by [e]. Finally, ∂_2 is injective on relative two-chains, so $H_2^{\Delta}(X, A) = 0$.

Remark 6.9. As always, complicated computations in simplical homology are easier to carry out using Smith normal form. Also, it helps to know the answer before you set out. Since X deformation retracts to $d \cup e$ we are confident about our calculation of $H_*(X)$. Since (X, A) is a good pair, and since X/A is homeomorphic to the Klein bottle, we are likewise confident of our calculation of $H_1(X, A)$.