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Lecture 1

“[...] so far as geometry is concerned, we need still
another analysis which is distinctly geometrical or
linear and which will express situation [situs]
directly as algebra expresses magnitude directly. ”

— G.W.Leibniz, Letter to Huygens, Sept. 8, 1679

Topology is the study of properties of sets that are invariant under continuous deformations;
it is concerned with concepts such as “nearness”, “neighbourhood”, and “convergence”. An
often cited example is that a cup is topologically equivalent to a torus, but not to a sphere. But
what exactly does “topologically equivalent” mean?

Figure 1.1: A cup morphing into a torus. (c) LucasVB (Wikipedia)

The roots of topology go back to the work of Leibniz and Euler in the 17th and 18th century.
It was only towards the end of the 19th century, through the work of Poincaré, that topology
began taking shape as a subject in its own right. His seminal paper “Analysis Situs” from
1895 introduced, among other things, the idea of a homeomorphism and the fundamental group.
Nowadays, topological ideas are an indispensable part of many fields of mathematics, ranging
from number theory to partial differential equations.

1.1 Background and terminology
This course assumes familiarity with metric spaces, linear algebra, some algebra (group theory),
and calculus. We use capital letters X, Y, Z to denote sets and A,B,C to denote subsets. We
often use U and V to label open sets and write I = [0, 1] for the unit interval in R. The notation
A ⊂ X denotes (not necessarily proper) inclusion, and X − A is the complement of A in X .
Following common pedantry, we will refer to “sets” of sets as collections of sets, to avoid logical
catastrophes (the “set of sets that are not members of themselves”). Other notation will be
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explained as it arises. Following common convention, we use arrows and diagrams to describe
maps between sets. A diagram such as

X Y

Z

h

f

g

describes three sets X, Y, Z and three functions, f : X → Y , g : Y → Z, and h : X → Z.
Such a diagram is commutative if all compositions agree; here, this means that h = g ◦ f . We
sometimes use the notation X ↪→ Y to denote an injective (or one-to-one) map (for example, the
map x 7→ x arising from an inclusion X ⊂ Y ), and X ↠ Y for a surjective (or onto) map. We
recall the definition of a metric space.

Definition 1.1. A metric space is a set X , together with a function d : X ×X → R, such that
for all x, y, x ∈ X ,

1. (positivity) d(x, y) ≥ 0, with equality if and only if x = y;

2. (symmetry) d(x, y) = d(y, x);

3. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Well known examples include Rn with the Euclidean distance

d(x, y) = ∥x− y∥2 =

√√√√ n∑
i=1

(xi − yi)2,

any distance induced by a norm, or the space C([0, 1]) of real-valued, continuous functions on
the interval [0, 1], with the metric

d(f, g) =

∫ 1

0

|f(x)− g(x)| dx.

Given a metric space (X, d) and x0 ∈ X , we denote by

B(x0, ε) = {x ∈ X : d(x, x0) < ε}

the open ball of radius ε centred on x0.

Definition 1.2. Let (X, d) be a metric space. A set U ⊂ X is called open in X , if for every
x ∈ U there exists an ε > 0 such that B(x, ε) ⊂ U . A subset of X is closed in X if its
complement is open.

Clearly, if (X, d) is a metric space, then the empty set ∅ and the whole set X are open.
Moreover, the union of any collection of open sets is open, and the intersection of a finite
collection of open sets is open (show this!). It turns out that these properties allow us to define
open sets and neighbourhoods beyond metric spaces.



1.2 Topological spaces
Definition 1.3. A topological space is a set X , together with a collection Ω of subsets of X ,
such that

(i) ∅ ∈ Ω and X ∈ Ω;

(ii) if {Ui}i∈I ⊂ Ω, then
⋃

i∈I Ui ∈ Ω;

(iii) if U, V ∈ Ω, then U ∩ V ∈ Ω.

The sets in Ω are called open sets and their complements in X are called closed sets.

Note that point (iii) implies that any finite intersection of open sets is again open.

Definition 1.4. Let (X,Ω) be a topological space. A neighbourhood of a point x ∈ X is a set
N such that there exists U ∈ Ω with x ∈ U ⊂ N .

While formally a topological space consists of the pair (X,Ω), we usually omit mentioning
Ω explicitly. Unless otherwise stated, when considering a metric space (X, d) we will always
use the metric topology, i.e., the topology whose open sets are given by Definition 1.2.

Example 1.5. Different metric spaces can give rise to the same topology. In fact, any two norms
on a finite-dimensional vector space give rise to the same topology. Consider, for example,
X = Rn with the norms ∥x∥1 =

∑n
i=1 |xi| and ∥x∥∞ = maxi |xi|, and the corresponding

distance functions d1(x, y) = ∥x− y∥1 and d∞(x, y) = ∥x− y∥∞. The norm inequalities

∥x∥∞ ≤ ∥x∥1 ≤ n · ∥x∥∞
ensure that for any set U ⊂ X and x0 ∈ U , there is an open ball around x0 in U with respect to
one of these norms, if and only if there is one with respect to the other.

Specifying a topology is not always easy. Just like one can specify a vector space by giving a
basis, one can also describe a topology in terms of a basis.

Definition 1.6. Let (X,Ω) be a topological space. A collection B ⊂ Ω is called a basis for the
topology Ω, if for all U ∈ Ω there exists a collection {Bi}i∈I ⊂ B such that

⋃
i∈I Bi = U . Given

x ∈ X , a collection B is called a neighbourhood basis for x, if for every open set U ∈ Ω with
x ∈ U , there exists B ∈ B such that x ∈ B ⊂ U .

Exercise 1.7. 1 Show that every metric space (X, d) is first countable: every point in X has a
countable neighbourhood basis. Next, show that R with the cofinite topology, i.e., the topology
whose open sets are the complements of finite sets, is not first countable. Hence, conclude that
there are topological spaces that do not arise from a metric.

Example 1.8. The open intervals (a, b) form a basis of the metric topology on R.

Given a collection of subsets B of a topological space (X,Ω), we say that B generates the
topology if B is a basis of Ω. Any collection of subsets B that is closed under finite intersections
generates a topology, whose open sets are just the unions of elements of B.

1The exercises in these notes are not examinable, they are only there for your enjoyment (though you may
benefit intellectually from attempting them, consider them as “cross training”).



Product spaces
Definition 1.9. Let X, Y be topological spaces. The product topology on X×Y is the topology
generated by sets of the form U × V , with U ⊂ X open and V ⊂ Y open.

Every open set in the product topology can be written as a (generally infinite) union of
“rectangles” U × V , but it is important to note that not all open sets are rectangles.

U

V

X

Y

Figure 1.2: The product topology

Exercise 1.10. One can define the product topology on Rn recursively by setting R2 = R× R
and Rn = Rn−1 × R for n ≥ 2. Show that the product topology on Rn is the same as the metric
topology. (One can interpret the first as the topology generated by “open boxes”, and the second
as the topology generated by “open balls”.)

Example 1.11. Just as in the case of Rn, one can form the unit cube In = In−1× I . The product
topology in this case is also the same as the subspace topology.

Subspaces
Definition 1.12. Let (X,Ω) be a topological space and A ⊂ X a subset. The subspace topology
on A consists of the open sets

Ω|A = {U ∩ A | U ∈ Ω}.

Example 1.13. The closed interval [0, 1] ⊂ R. Note that (1/2, 1] is open in the subspace
topology on [0, 1]!

Example 1.14. The unit sphere,

Sn = {x ∈ Rn+1 |
n+1∑
i=1

x2
i = 1}.

Note that the superscript denotes the dimension of the sphere, and not that of the ambient space
in which the sphere lives.



Figure 1.3: The spheres S0, S1 and S2.

Example 1.15. The unit ball

Dn = {x ∈ Rn |
n∑

i=1

x2
i ≤ 1}.

Example 1.16. The topological torus, defined as product of 1-spheres (circles)

T1 = S1, Tn = Tn−1 × T1 = S1 × · · · × S1 (n times),

for n ≥ 2. To justify the terminology “torus”, consider the parametrization of a torus X in R3 as
the set of (x, y, z) such that

x(θ, φ) = (a cos(θ) + b) sin(φ)

y(θ, φ) = (a cos(θ) + b) cos(φ)

z(θ, φ) = a sin(θ).

for θ, φ ∈ [0, 2π) and fixed 0 < a < b.

Figure 1.4: The embedded torus. The large circle going through the torus has radius b and the
small circle bounding a section has radius a.

The product of spheres, T2 = S1×S1, can in turn be parametrized as the set of (x1, y1, x2, y2) ∈
R4 such that

x1 = cos(θ), y1 = sin(θ), x2 = cos(φ), y2 = sin(φ),

for θ, φ ∈ [0, 2π). This gives rise to a function

f : S1 × S1 → X
x1

y1
x2

y2

 7→

(ax1 + b)y2
(ax1 + b)x2

ay1


As we will see, this map is a continuous bijection with continuous inverse, also called a homeo-
morphism.



1.3 Topological equivalence
Definition 1.17. Let X, Y be topological spaces. A function f : X → Y is called continuous, if
for any open set V ⊂ Y , the preimage f−1(V ) = {x ∈ X | f(x) ∈ V } is open in X .

We will refer to a continuous function simply as a map. Unless stated otherwise, all functions
in this lecture are continuous.

Example 1.18. The identity function, IdX : X → X , x 7→ x, is clearly continuous, as is the
inclusion ι : A ↪→ X of a subset A ⊂ X with the subspace topology.

Example 1.19. The function R → S1 given by t 7→ (cos(t), sin(t)) is continuous. We will often
identify R2 with C, and write eit instead of (cos(t), sin(t)).

Example 1.20. The function R → R, defined by

x 7→
{

x
|x| if x ̸= 0

0 if x = 0

is not continuous.

It is clear that compositions of continuous maps are continuous, a fact we will use repeatedly.
Equally, the product map of two continuous maps is continuous. The following result, which
will be used often, is a little less obvious.

Lemma 1.21. (Pasting Lemma) Let X = A∪B, with A,B both closed subspaces of a topological
space X . Let f : X → Y be a function and assume that f |A and f |B are continuous. Then f is
continuous.

Exercise 1.22. Prove Lemma 1.21.

Definition 1.23. Let X, Y be topological spaces. A map f : X → Y is called a homeomorphism,
if there exists a map g : Y → X such that

f ◦ g = IdY , g ◦ f = IdX .

If a homeomorphism between X and Y exists, these spaces are called homeomorphic, written
X ∼= Y .

Example 1.24. The identity IdX is clearly a homeomorphism. The map R → R, x → x3 is a
homeomorphism, while x 7→ x2 is not (it is not invertible).

When we speak of spaces being “topologically equivalent”, we mean that they are homeo-
morphic. Topology does not distinguish between homeomorphic spaces.

Exercise 1.25. Show that the map f : T2 → X from Example 1.16 is a homeomorphism. This
requires figuring out the inverse of this map and showing that both the map, and its inverse, are
continuous.



1.4 The Fundamental Problem
The Fundamental Problem in topology is to classify spaces up to homeomorphism. More
precisely, we would like to have a way of answering the question:

Given topological spaces X, Y , is X ∼= Y ?

Exercise 1.26. Show that the unit cube In is homeomorphic to the unit ball Dn.

Example 1.27. R0 = {pt} (a single point) is not homeomorphic to R1 (a line).

How about R1 and R2? One might think that they are topologically not the same, as one is
“somehow bigger”. If they were homeomorphic, one could find a continuous and continuously
invertible parametrization of the plane by a line. It turns out that the problem of showing that
two real vector spaces of different dimension are not homeomorphic is not trivial. The tools
developed in this module will allow to prove the following.

Theorem 1.28. (Invariance of Domain, Brouwer 1910) Rm ∼= Rn if and only if m = n.

Exercise 1.29. Try to show that S2 ̸∼= T2.

To show that two spaces are homeomorphic, one only needs to provide a homeomorphism.
To show that they are not homeomorphic is more difficult, and amounts to finding a property
that is a) invariant under homeomorphism, and b) is satisfied by one of the spaces but not the
other. As we will see, algebraic invariants such as the fundamental group (the main topic of this
module) allow to accomplish this.





Lecture 2

In this lecture we will have a closer look at the construction of topological spaces using disjoint
unions and quotient spaces, and show how to formalize “cut and paste” operations on topological
spaces.

2.1 The disjoint union
Definition 2.1. Let X, Y be topological spaces. The disjoint union of X and Y is the topological
space with underlying set

X ⊔ Y = X × {0} ∪ Y × {1},

and the topology whose basis consists of sets of the form U × {0} and V × {1} for U ⊂ X and
V ⊂ Y open.

Remark 2.2. The {0} and {1} in the definition are arbitrary; there is not deeper meaning in
using these two numbers. Formally, given a topological space X and a one-point space {pt} (we
often use this notation to denote a space consisting of only one point, whose precise identity
does not matter for topological purposes), we can construct the space X × {pt} and equip it
with the product topology. It is then an easy exercise to show that the inclusion map

ι : X ↪→ X × {pt}, x 7→ (x, pt)

is a homeomorphism. We will therefore not distinguish these two spaces, and think of X × {0}
and X × {1} simply as two disjoint copies of X . For example, X ⊔X amounts to taking the
union of X and a disjoint copy of X , while X ∪X is just X . We can iterate this construction
and write, for a collection of topological spaces {Xi}i∈Z,⊔

i

Xi =
⋃
i

Xi × {i}.

For example, if we take Xi = [i, i+ 1), the half open interval starting at i, then
⋃

i Xi = R.

Example 2.3. The 0-sphere can be written as S0 ∼= {pt} ⊔ {pt}. The topology on this space is
the discrete topology (all subsets are open).

9



2.2 The quotient topology
Another important construction is the quotient, which formalizes the notion of “glueing” or
“pasting”. Recall that an equivalence relation is a subset E ⊂ X ×X such that:

• for all x ∈ X , (x, x) ∈ E (reflexive);

• if (x, y) ∈ E, then (y, x) ∈ E (symmetric);

• if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E (transitive).

Once we fix an equivalence relation E, we usually write x ∼ y instead of (x, y) ∈ E. The
equivalence class of x ∈ X is the set

[x] = {y ∈ X | x ∼ y}.

The set of all equivalence classes of an equivalence relation E is denoted by X/E or X/∼. The
quotient map is the map q : X → X/E, q(x) = [x].

Definition 2.4. The quotient topology on X/E has as open sets those V ⊂ X/E for which
q−1(V ) = {x ∈ X | q(x) ∈ V } is open.

Note that a subset V ⊂ X/E is open if and only if

U =
⋃

[x]∈V

[x]

is open in X . By definition, the quotient map is continuous.

Exercise 2.5. Let X be a topological space, E an equivalence relation, and X/E the corresponding
quotient space. Show that for all topological spaces Z and all functions g : X/E → Z, g is
continuous if and only if the composition f = g ◦ q is continuous.

X

X/E Z

fq

g

Example 2.6. Consider X = I = [0, 1]. Define the equivalence relation

x ∼ y ⇔ (x = y) or (x = 0, y = 1) or (x = 1, y = 0).

The quotient space X/E then consists of the classes [x] = {x} for x ̸∈ {0, 1} and [0] = [1] =
{0, 1}. The result is an interval with the endpoints “glued together”, sometimes written I/(0 ∼ 1)

to highlight the fact that only 0 and 1 are identified. If we parametrize the circle by

f : I → S1, t 7→ exp(2πit),



0 1

0~1 
Figure 2.5: Glueing an interval at the endpoints to obtain a circle.

then this map is one-to-one except at the endpoints, and identifying these endpoints gives rise to
a homeomorphism (recall our convention of viewing the circle as subset S1 ⊂ C). One also says
that the map f “factors” over the quotient space, as indicated in the following diagram:

I

I/(0 ∼ 1) S1

f
q

∼=

The above example is a special case of a more general construction. Let A ⊂ X be a subset.
Such a subset gives rise to the equivalence relation

x ∼ y ⇔ (x = y) or {x, y} ⊂ A.

The corresponding quotient space, by some abuse of notation sometimes referred to as X/A (note
that A is a subset of X , and not a subset of X ×X!), consists of classes [x] = {x} if x ∈ X −A
and [x] = [y] if x, y ∈ A. In words, X/A corresponds to “crushing” the set A onto one point.

Exercise 2.7. Recall the set inclusion Sn−1 ⊂ Dn. Show that Dn/Sn−1 ∼= Sn. Since [0, 1] ∼=
[−1, 1] = D1 and {0, 1} ∼= {−1, 1} = S0, this generalizes Example 2.6. Can you interpret the
case n = 2 visually?

Disjoint unions and quotients can be combined to construct new spaces.

Example 2.8. Consider the disjoint union of Z times the interval I . Formally, this amounts to
taking the union

X =
⋃
k∈Z

I × {k}.

By gluing the endpoints, i.e., identifying {1} × {k} with {0} × {k+ 1}, one obtains a set that is
homeomorphic to R (check this!)

In a similar fashion, one can build up R2 by tiling more sophisticated shapes.



A
X

Figure 2.6: The real line by gluing intervals.

Figure 2.7: The plane by tiling shapes.

Example 2.9. Consider the square X = I2 = [0, 1]2. Define an equivalence relation

(x, y) ∼ (x′, y′) ⇔ (x, y) = (x′, y′) or (y = y′, {x, x′} ⊂ {0, 1}).

In words, we identify each point on the left boundary with the corresponding point on the right
boundary. The result is a space homeomorphic to a cylinder.

Example 2.10. Consider again the square and define an equivalence relation by

(x, y) ∼ (x′, y′) ⇔ (x, y) = (x′, y′) or (y = 1− y′, {x, x′} ⊂ {0, 1}).



We now identify each point on the left boundary with coordinate y with the point on the right
boundary with coordiante 1− y.

a a ⇒

a

Figure 2.8: The Möbius strip

The result of this construction is the famous Möbius strip, a surface with only one side. This
surface is not homeomorphic to the cylinder (try to find out why!)

Exercise 2.11. Show that
R2/Z2 ∼= T2,

where R2/Z2 is the quotient space with respect to the equivalence relation

(x, y) ∼ (x′, y′) ⇔ x− x′ ∈ Z, y − y′ ∈ Z.

The quotient map is an example of an identification map: this is a surjective map between
topological spaces, f : X → Y , such that U ⊂ Y is open if and only if f−1(U) is open.
Identification maps satisfy the following property.

Proposition 2.12. A surjective map f : X → Y is an identification map if and only if for every
space Z and every function g : Y → Z, g ◦ f is continuous if and only if g is continuous.

X

Y Z

f
g◦f

g

Exercise 2.13. Prove Proposition 2.12.





Lecture 3

So far we looked at the notion of homeomorphism, and considered spaces to be “topologically
equivalent” if they are homeomorphic. Intuitively, homeomorphic spaces are the same up to
“stretching” and “shrinking”, but not crushing or cutting. Homeomorphism is a rather fine
equivalence, and considering a coarser relation such as homotopy equivalence can be useful. We
begin by discussing retractions, continuous functions of a space to a subspace, and deformation
retracts, which formalize the idea of continuously squeezing a space onto a subspace. This
concept will lead naturally to the idea of homotopy.

3.1 Retractions
Definition 3.1. A pair of spaces (X,A) consists of a topological space X and a subspace
A ⊂ X . If A = {x}, then we write (X, x) and call this a pointed space.

Example 3.2. Consider the pair of spaces (R2 − {0}, S1), or the pair (S1, (1, 0)).

Figure 3.9: The pairs (R2 − {0}, S1) and (S1, (1, 0)).

Definition 3.3. A subset A ⊂ X is a retract of X if there is a map r : X → A (the retraction)
such that the restriction satisfies

r|A = IdA,

i.e., r(a) = a for a ∈ A.

Example 3.4. The set R2 − {0} retracts to S1 via r(x) = x/∥x∥.

Exercise 3.5. Show that X = I does not retract to A = {0, 1}.

The following generalization is non-trivial, and we will only be able to prove it later after
discussing the fundamental group.
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Theorem 3.6. (Brouwer) The ball Bn does not retract to Sn−1.

We next describe what it means to deform a space onto a subspaces in a continuous manner.

Definition 3.7. Let (X,A) be a pair of spaces. X deformation retracts to A (and A is called
a deformation retract of X), if there exists a one-parameter family of functions ft : X → X ,
t ∈ I = [0, 1], such that

f0 = IdX , f1(X) = A, ft|A = IdA, t ∈ [0, 1],

and the map X × I → X , (x, t) 7→ ft(x) is continuous.

In the literature, this notion is sometimes called a strong deformation retract, the strong
referring to the requirement that ft|A = IdA throughout.

Example 3.8. Rn deformation retracts to 0 by means of ft(x) = (1 − t)x. This is called the
straight-line homotopy.

Exercise 3.9. Show that Rn −{0} deformation retracts to Sn−1 via ft(x) = (1− t)x+ tx/∥x∥.

Figure 3.10: Deformation of a punctured plane R2 − {0} onto the circle S1.

3.2 Homotopy
Definition 3.10. Let X, Y be topological spaces, and I = [0, 1]. A map

F : X × I → Y

is called a homotopy. If ft(x) = F (x, t), then F is called a homotopy from f0 to f1. We say
that two maps f, g are homotopic, written f ≃ g, if there exists a homotopy F such that f0 = f
and f1 = g.

Proposition 3.11. Homotopy is an equivalence relation: if f, g, h : X → Y are maps, then

(i) f ≃ f ;



(ii) f ≃ g ⇔ g ≃ f ;

(iii) f ≃ g, g ≃ h ⇒ f ≃ h.

Proof of Proposition 3.11. The points (i) and (ii) are utterly trivial. For (iii), assume we have
homotopies F : X × I → Y and G : X × I → Y such that f0 = f , f1 = g = g0, and g1 = h.
Construct a new homotopy between f and h as

H(x, t) =

{
F (x, 2t) t ≤ 1/2,

G(x, 2t− 1) t ≥ 1/2.

The continuity of H follows from the Pasting Lemma (Lemma 1.21 in Lecture 2).

Remark 3.12. There is nothing special about using the interval I in the definition of homotopy:
one could equally use any other closed interval [a, b]. In fact, let φ : I → [a, b] be the continuous
reparametrization given by φ(t) = a+(b−a)t. Then given a continuous map F : X× [a, b] → Y
we can get a homotopy G : X × I → Y by setting G(x, t) = F (x, φ(t)).

Definition 3.13. Let X, Y be topological spaces. We say X is homotopy equivalent to Y
(written X ≃ Y ), if there are maps

f : X → Y, g : Y → X,

such that
g ◦ f ≃ IdX , f ◦ g ≃ IdY .

Homotopy equivalence allows for squeezing spaces, but not for tearing. Note that homeo-
morphic spaces are homotopy equivalent, but the converse does not hold. In particular, if we
manage two show that two spaces are not homotopy equivalent, then they cannot be homeo-
morphic.

Example 3.14. The space Rn is homotopy equivalent to a point for any n, Rn ≃ R0. To see this,
consider the maps

f : Rn → R0, x 7→ 0

and
g : R0 → Rn, 0 7→ 0.

Note that f ◦ g = IdR0 . Consider now the map g ◦ f : Rn → Rn, mapping any x to 0. Consider
the straight-line homotopy

F : Rn × I → Rn, (x, t) 7→ tx.

Then f0 = g ◦ f and f1 = IdRn , which shows that g ◦ f ≃ IdRn .

Exercise 3.15. Show that ≃ is an equivalence relation on topological spaces.

Example 3.16. For all m,n, we have Rn ≃ Rm. More generally, for all topological spaces X ,
we have X × Rn ≃ X .



Example 3.17. We have Rm − {0} ≃ Sm−1. To construct the homotopy, consider the inclusion
map f : Sm−1 → Rm − {0}, and the retraction g : Rm − {0} → Sm−1, given by x 7→ x/∥x∥.
Then g ◦ f = IdSm−1 , and for f ◦ g we construct the homotopy

F : Rm − {0} × I → Rm − {0}, (x, t) 7→ (1− t)x+ tx/∥x∥.

Note that this is just the deformation retract from Example 3.9, and that f0 = IdRn−{0} and
f1 = g ◦ f .

How does homotopy relate to the notion of a deformation retract? Clearly, if a space X
deformation retracts to a point x ∈ X , then it is homotopy equivalent to a point (contractible),
but the converse need not hold! It is, for example, non-trivial to show that spheres Sn for n ≥ 1
are not contractible.

Definition 3.18. A topological space X is called contractible if X ≃ {pt}.

We have seen that Rn for n ≥ 1 is contractible: there exist maps f : Rn → R0 and
g : R0 → Rn such that f ◦ g = IdR0 and g ◦ f ≃ IdRn , with the homotopy from the identity IdRn

to the retraction g ◦ f : Rn → {0} given by the linear homotopy F (x, t) = (1− t)x.

Remark 3.19. One should compare the notion of contractibility with that of a deformation
retract. If X deformation retracts to a point A = {a} ⊂ X , then X is contractible. To be
more precise, by the definition of a deformation retract, we have a family of maps ft : X → X
such that f0 = IdX , f1(x) = a for x ∈ X , and ft(a) = a for all t. Considering the retraction
f : X → A and the inclusion g : A → X , we get f ◦ g = IdA. On the other hand, g ◦ f = f1
and IdX = f0, so that we get a homotopy IdX ≃ g ◦ f by setting F (x, t) = ft(x).

The converse is not true: a spaces can be contractible but not deformation retract to a point
(try to think of an example!)

Theorem 3.20. The sphere Sn for n ≥ 0 is not contractible.

Exercise 3.21. Proof the above Theorem for n = 0.

Theorem 3.20 is highly non-trivial. The case n = 1 will occupy a large part of this course.
The general case follows from homology theory, which is the subject of follow-up courses in
Algebraic Topology.



Lecture 4

We have seen different notions of equivalence: homeomorphism (X ∼= Y ), homotopy of maps
(f ≃ g) and homotopy equivalence of spaces (X ≃ Y ). The last of these notions allows spaces
to be identified that look superficially different, but can somehow be deformed or “continuously
collapsed” into one another. In this lecture we will study paths and loops as a way to understand
the topology of spaces. Recall that a map is always assumed to be continuous.

4.1 Paths
Definition 4.1. Let x, y ∈ X . A path from x to y is a map f : I → X with f(0) = x and
f(1) = y.

Definition 4.2. Let f, g : I → X be paths with f(1) = g(0). The path f ∗ g : I → X , defined by

f ∗ g(t) =
{
f(2t) t ≤ 1/2

g(2t− 1) t ≥ 1/2.

is called the concatenation of f and g.

f(0)

f(1)=g(0) g(1)

Figure 4.11: The concatenation of two paths.

Remark 4.3. It is very important to note that a path is not the same as its image! Consider, for
example, the path f : I → S1, t 7→ exp(4πit). The image of this path is the circle S1 (considered
as subset of C), but as a path it goes around the circle twice. In particular, a path need not be
injective.

Definition 4.4. A topological space X is called path connected if for any two points x, y ∈ X
there exists a path f : I → X with f(0) = x and f(1) = y.
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Since paths are maps between topological spaces, we can consider homotopies of paths:
given two paths f, g : I → X , a homotopy is given by a map F : I × I → X with f0 = f and
f1 = g.

Exercise 4.5. Show that if X is path connected, then every path f : I → X is homotopic to a
constant path g(t) = x.

To get more useful topological information out of paths, we consider paths with common
endpoints.

Definition 4.6. Let x, y ∈ X and let f, g : I → X be paths from x to y. Then f is homotopic to

g relative to the boundary (or relative to the endpoints), written f
∂≃ g, if there is a homotopy

F : I × I → X

with f0 = f , f1 = g and for all t, ft(0) = x, ft(1) = y.

f

g

x

y

Figure 4.12: Homotopic relative to endpoints.

Example 4.7. Let X = S1 ⊂ C and consider the maps f(t) = exp(πit) and g(t) = exp(−πit).
Thus f(t) moves from 1 to −1 along the top, while g(t) moves from 1 to −1 along the bottom
half of the circle.

Figure 4.13: Two paths that are homotopic, but where there is no homotopy in S1 that preserves
endpoints.

Then f ≃ g (construct an explicit homotopy!), but not in an end-point preserving fashion.
While constructing a homotopy between these paths is easy, showing that this can not be done in
an end-point preserving way is surprisingly hard!

Lemma 4.8. Let x, y ∈ X . The relative homotopy
∂≃ is an equivalence relation on the set of

paths I → X with endpoints x, y.



Proof. It is clear that f
∂≃ f and f

∂≃ g ⇔ g
∂≃ f for paths f, g : I → X with common endpoints.

To show transitivity, let f, g, h : I → X be paths from x to y such that f
∂≃ g and g

∂≃ h. This
means that there are homotopies

F : I × I → X, G : I × I → X

such that f0 = f , f1 = g0 = g, and g1 = h. Define a new map H : I × I → X by

H(s, t) =

{
F (s, 2t) if t ≤ 1/2

G(s, 2t− 1) if t ≥ 1/2
.

s

t F

G

Figure 4.14: The homotopy H coincides with (a reparametrized version of) F on the lower
rectangle (t ≤ 1/2), and with G on the upper rectangle (t ≥ 1/2).

Clearly, h0 = f and h1 = h. Moreover, by the Pasting Lemma 1.21, H is continuous, which

shows that f
∂≃ h.

Lemma 4.9. Assume that f
∂≃ g and f ′ ∂≃ g′, where f, g : I → X are paths with f(1) = g(0).

Then f ∗ f ′ ∂≃ g ∗ g′.

f

g

f'

g'

z
y

x

Figure 4.15: Concatenated homotopies.

Proof. The proof is essentially the same as that of Lemma 21.1, but with the role of s and t
reversed. The situation is visualized as follows.

Formally, consider homotopies F and F ′ with f0 = f , f1 = g, f ′
0 = f ′, f ′

1 = g′. Define a
new map

G(s, t) =

{
F (2s, t) if s ≤ 1/2

G(2s− 1, t) if s ≥ 1/2
.



s

t
F G

Figure 4.16: The homotopy H coincides with (a reparametrized version of) F on the left rectangle
(s ≤ 1/2), and with G on the right rectangle (s ≥ 1/2).

As before, this map is continuous, and satisfies h0 = f ∗ f ′ and h1 = g ∗ g′, thus showing that

f ∗ f ′ ∂≃ g ∗ g′.

In the coming lecture we will look at special types of paths, called loops, which start and end
at the same point. Using Lemma 21.1 and 21.2, we will see that the set of equivalence classes of
loops have a group structure, leading to the concept of the Fundamental Group of a pointed
topological space.



Lecture 5

In this lecture we look at loops and will discover that there is an underlying algebraic structure,
the Fundamental Group, that allows to gain insight into the topological features of spaces.

5.1 Loops and the Fundamental Group
We call a topological space X with a point x0 a pointed space (X, x0).

Definition 5.1. Let (X, x0) be a pointed space. A loop is a path f : I → X with f(0) = f(1) =
x0.

Note that the composition of two loops is again a loop.
Since in Lecture 4 we have seen that homotopy on paths with common endpoints is an

equivalence relation, we can form equivalence classes of loops

[f ] = {g : g : I → X, g(0) = g(1) = x0, g
∂≃ f}.

The set of equivalence classes of loops on (X, x0) is denoted by π1(X, x0). We have seen
that if f ≃ g and f ′ ≃ g′, then f ∗ f ′ ≃ g ∗ g′. From this it follows that the equivalence class
[f ∗ f ′] only depends on the classes [f ] and [f ′], and not on the particular choice of representative
in each class. This allows us to define a product

[f ] • [g] := [f ∗ g].

Proposition 5.2. (π1(X, x0), •) is a group, called the Fundamental Group of the pointed space
(X, x0). The unit element is the class [e] of the constant loop, and for every [f ], the inverse [f ]−1

is the class [f ], where f(t) = f(1− t) is the inverse loop.
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Proof. (1) We first show that [f ] • [e] = [e] • [f ] = [f ]. If f : I → X is a loop, we thus need to
show that

f ∗ e ∂≃ e ∗ f ∂≃ f.

For this, we first construct a homotopy from f ∗ e to e ∗ f as follows

F (s, t) =

{
x0 2s ≤ t or 2s− 1 ≥ t

f(2s− t) else.

Indeed, we see that

f0(s) = F (s, 0) =

{
f(2s) if s ≤ 1/2

x0 if s ≥ 1/2,

which is the definition of f ∗ e. Similarly, one checks that f1 coincides with e ∗ f . By the Pasting
Lemma 1.21, we get a homotopy. How does one derive this homotopy? A simple way is to draw
a diagram to visualise what is happening.

s

t
f
x0

x0

Figure 5.17: The composition of f and the constant loop on the lower boundary, and the
composition of the constant loop and f on the upper boundary. The parameter t on the vertical
axis parametrizes the different maps ft in the homotopy.

In Figure 5.17, one then only needs to figure out the regions in (s, t) space where the
homotopy coincides with f , and where it coincides with x0. Of course, the functions should then
be rescaled so that every vertical slice of of the f -band starts with f(0) and ends with f(1). To

show that f
∂≃ e ∗ f , one similarly uses a diagram

s

t
f

x0

Figure 5.18: The loop f is homotopic to the composition e ∗ f .

We leave the explicit description (and that for f
∂≃ f ∗ e) as an exercise.



(2) We next show the existence of the inverse. Let f : I → X be a loop and f : I → X the

loop with f(s) = f(1− s). We need to show that f ∗ f ∂≃ e and f ∗ f ∂≃ e. For this, we consider
the diagram

s

t f

x0 x0

f

Figure 5.19: A loop composed with its inverse is homotopic to the constant loop.

Explicitly, this diagram suggests the homotopy

F (s, t) =


x0 if 2s ≤ t of 2− 2s ≤ t

f(2s− t) if 2s ≤ 1 and t ≤ 2s

f(2s+ t− 1) if 2s ≥ 1 and t ≤ 2s− 2.

One verifies that f0 = f ∗ f and that f1 = e. The same diagram with f and f interchanged

gives a homotopy f ∗ f ∂≃ e.

(3) To verify associativity, namely that (f ∗ g) ∗ h ∂≃ f ∗ (g ∗ h), we use the diagram

s

t
f g h

Figure 5.20: Three loops composed in different order.

The detailed expression for the homotopy is left as an exercise.

Example 5.3. π1(R2, {0}) = 0, as every loop is homotopic to the origin.

Example 5.4. Let X = S1 ⊂ C with x0 = 1. Then intuitively one would say π1(X, x0) ∼= Z,
when looking at loops of the form f(t) = exp(2πkit) for k ∈ Z, that is, it goes around k times
in clockwise or anti-clockwise direction. The composition of two such loops is clearly another
such loop. On the unit circle, this composition can be realized as the product exp(2πkit) ·
exp(2πmit) = exp(2πi(k + m)t). While this example is intuitively clear, it is not a formal
proof! The problem is that the fundamental group consists of homotopy classes of loops, not
loops themselves. If we only consider loops of the form above, then clearly we have a group, but



how can we be sure that every loop is homotopic to a loop of this form? Also, how can we be
sure that two such loops with different parameter k are not homotopic to each other or to the
constant loop? We will get back to this example after discussing covering spaces, and formally
prove that π1(S

1, x0) ∼= Z.



Lecture 6

In this lecture we discuss an important class of spaces, where any two points can be connected
by a path.

6.1 Path connected spaces
For certain spaces, π1(X, x0) is actually a topological invariant of the space itself: it does not
depend on the choice of basepoint.

Proposition 6.1. If X is path-connected, then for any two x0, x1 ∈ X , the fundamental groups
π1(X, x0) and π1(X, x1) are isomorphic, π1(X, x0) ∼= π1(X, x1).

Proof. Let h : I → X be a path from x0 to x1, with inverse path h. Define the map

βh : π1(X, x0) → π1(X, x1)

[f ] 7→ [h ∗ f ∗ h].
We need to show that βh is an isomorphism of groups, with βh = β−1

h as inverse.

(1) We first show that βh is a bijection. Note that since h ∗ h ∂≃ ex0 (the constant loop on x0)

and h ∗ h ∂≃ ex1 , we get that

βh ◦ βh([f ]) = [h ∗ h ∗ f ∗ h ∗ h] = [f ],

and hence βh ◦ βh = Idπ1(X,x0). Similarly, one shows that βh ◦ βh = Idπ1(X,x1), thus showing
that βh is a bijection with inverse map βh.

(2) We next need to verify that βh is a group homomorphism. This is the case, because

βh([f ] • [g]) = βh([f ∗ g])
= [h ∗ f ∗ g ∗ h]
= [h ∗ f ∗ h ∗ h ∗ g ∗ h]
= [h ∗ f ∗ h] • [h ∗ g ∗ h]
= βh([f ]) • βh([g]).

The same argument works for βh, showing that we have an isomorphism.

For path-connected spaces X , we will often simply write π1(X) if we only care about the
structure of the group and not the basepoint.
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6.2 The Fundamental Group and the Fundamental Theorem
In Lecture 5, we heuristically argued that π1(S

1) ∼= Z, but did not provide a formal prove. While
intuitively clear, this result is not completely obvious to proof. As usual, we consider the circle
S1 ⊂ C as subset of the complex numbers, and define the loops with basepoint 1

ωn : I → S1, ωn(s) = exp(2πin · s)

for n ∈ Z. Thus each ωn goes around the circle |n| times in counterclockwise (if n > 0) or
clockwise (if n < 0) direction. In particular, ω0 = e is the constant loop with basepoint 1. Note
that ωn = ωn

1 . The following theorem states the (apparently, but not, obvious) fact that every
loop on S1 with basepoint 1 is of this form.

Theorem 6.2. The fundamental group π1(S
1, 1) is the infinite cyclic group generated by [ω1],

i.e.,
π1(S

1, 1) = ({[ωn] | n ∈ Z}, •) ∼= Z.

To prove this theorem, we have to make an excursion and discuss covering spaces. Before
embarking on this theory, we will show that this result allows to prove the Fundamental Theorem
of Algebra 2

Theorem 6.3. Every non-constant, complex polynomial p(z) ∈ C[z] has at least one complex
root, i.e., a λ ∈ C such that p(λ) = 0.

Proof. The proof is by contradiction. Assume that there exists a polynomial

p(z) = zn + a1z
n−1 + · · ·+ an−1z + an

of degree n ≥ 1 such that p(λ) ̸= 0 for all λ ∈ C (we can without lack of generality assume
p(z) to be monic, meaning that the coefficient of zn is 1). For every real number r > 0, such a
polynomial gives rise to a loop gr on S1

gr(s) =
p(r exp(2πis))/p(r)

|p(r exp(2πis))/p(r)| ,

with basepoint gr(0) = gr(1) = 1. The strategy of the proof is two show, via two different
homotopies, that

gr
∂≃ e, and gr

∂≃ ωn.

Of course this should not be possible, giving the desired contradiction.
(1) Consider the homotopy ft = gtr. Then f1 = gr and f0 = e, and [gr] = [e].
(2) To show that gr is homotopic to ωn, the idea is to use p to construct a sequence of

polynomial pt that move continuously to zn:

pt(z) = zn + t(a1z
n−1 + · · ·+ an−1z + an).

2This celebrated result was first proved by J. Wood (1798) and C.F.Gauss (1799), but with subtle gaps. A first
correct proof was given by J-R. Argand in 1806. Nowadays, countless algebraic, topological, geometric and analytic
proofs are available.



If we can define, for some r, loops

f̃t(s) =
pt(r exp(2πis))/pt(r)

|pt(r exp(2πis))/pt(r)|
,

then f̃1 = gr and f̃0 = exp(2πis) = ωn. To make sure that we can construct such f̃t, we have
to make sure that none of the quantities we are dividing by can be 0, or in other words, that
the polynomials pt(z) have no roots with |z| = r. We will show that this is the case if r is big
enough. More specifically, let r be such that

r > max{|a1|+ · · ·+ |an|, 1}.

Then for z ∈ C with |z| = r we have

|z|n > (|a1|+ · · ·+ |an|)|z|n−1

> |a1||z|n−1 + |a2||z|n−2 + · · ·+ |an−1||z|+ |an|
≥ |a1zn−1 + · · ·+ an|.

In particular, for t ∈ [0, 1], the polynomials pt cannot have a root with |z| = r, as the absolute
value of |z|n is always bigger than that of the rest of the terms. It follows that the homotopy f̃t is
well defined.





Lecture 7

Covering spaces are an essential tool in the derivation of the fundamental group of the circle, and
also play an important role in algebraic topology and related fields. In this lecture we introduce
and study covering spaces in some detail.

7.1 Covering spaces
Definition 7.1. A covering is a map p : X̃ → X such that there exists an open cover {Uα} of X ,
such that for every α, the preimage is a disjoint union of open sets

p−1(Uα) =
⊔
β

V β
α ,

and such that the restriction p|V β
α
: V β

α → Uα is a homeomorphism.

Example 7.2. For k ∈ Z, the maps pk : S
1 → S1, z 7→ zk are covering maps. The preim-

age p−1(z) of any point z = exp(2πit) ∈ S1 consists of precisely k distinct points, namely
exp(2πi(t+ j)/k) for j ∈ {0, . . . , k− 1}. For z = 1, these are precisely the k-th complex roots
of unity.

z1
z2

z3

z4

z5
z6

z7

α

Figure 7.21: The preimage p−1
7 (1).

Example 7.3. The map p∞ : R → S1, t 7→ exp(2πit) is a covering map. The preimage p−1
∞ (z)

consists of ∞ many points.

31



3

2

1

0

−1

1

p∞

1

Figure 7.22: The preimage p−1
∞ (1).

Definition 7.4. A covering p : X̃ → X is called an n-fold covering if for all x ∈ X , p−1(x)
consists of precisely n points.

Definition 7.5. Two coverings p : Y → X and q : Z → X are called isomorphic, if there exists
a homeomorphism h : Y → Z such that p = q ◦ h.

It is common to visualize concepts such as the isomorphism of coverings via commutative
diagrams such as the following.

Y Z

X

p

h
∼=

q

The requirement is, that all compositions in such a diagram should coincide.

Example 7.6. The coverings p2 : S1 → S1 and p−2 : S
1 → S1 are isomorphic: the homeomorph-

ism h : S1 → S1, h(z) = 1/z, satisfies p−2 = p2 ◦ h.

Example 7.7. The coverings p2 : S1 → S1 and p3 : S
1 → S1 are not isomorphic: one is a 2-fold

covering and the other is a 3-fold covering.

Definition 7.8. Let p : X̃ → X be a covering. A deck transformation is a homeomorphism
τ : X̃ → X̃ such that p ◦ τ = p, i.e., τ gives rise to an isomorphism of a covering to itself. The
set of all deck transformations of a cover is called Deck(p).

Exercise 7.9. Show that (Deck(p), ◦), where ◦ is the composition of maps, is a group.

Example 7.10. The map τ : S1 → S1, z 7→ −z gives a deck transformation for the cover
p2 : S

1 → S1.

Exercise 7.11. Show that for m ∈ Z, the maps τm : R → R, t 7→ t+m, give a deck transforma-
tion for the cover p∞ : R → S1. Conclude that Deck(p∞) ∼= Z.



We next aim to construct a homomorphism from Z to the fundamental group π1(S
1, 1).

To construct this homomorphism, we need to study how to lift homotopies from a space to a
covering space.





Lecture 8

8.1 Liftings
Definition 8.1. Given a covering p : X̃ → X , a lift of f : Y → X was a map f̃ : Y → X̃ such
that f = p ◦ f̃ ,

X̃

Y X

p
f̃

f

Example 8.2. Consider a loop f : I → S1, t 7→ exp(2πint) and the covering p∞. Then the map
f̃ : I → R, t 7→ nt, is a lift of f .

Lemma 8.3. Let p : X̃ → X be a cover and f̃ , g̃ : Y → X̃ maps. Then:

(1) f̃ is a lift of p ◦ f̃ ;

(2) If f̃ ≃ g̃, then p ◦ f̃ ≃ p ◦ g̃ (“Homotopies descend”);

(3) If α, β : I → X̃ are paths with α(1) = β(0), then p ◦ (α ∗ β) = (p ◦ α) ∗ (p ◦ β) (“Paths
descend”).

Proof. Property (1) is obvious from the definition of a lift. For property (2), observe that any
homotopy f̃t from f̃ to g̃ gives rise to a homotopy p ◦ f̃t from p ◦ f̃ to p ◦ g̃. For property (3),
note that

p ◦ (α ∗ β)(t) =
{
p ◦ α(2t) t ≤ 1/2

p ◦ β(2t− 1) t ≥ 1/2
,

which is the same as (p ◦ α) ∗ (p ◦ β)(t).

8.2 Loops on S1

Recall the map

ωn : I → S1

t 7→ exp(2πint).
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The map ω̃n : I → R, t : nt is clearly a lift of ωn, i.e., it satisfies

ωn = p ◦ ω̃n. (A)

Consider also the deck transformation τn : R → R, t 7→ t+n, and the composition ω̃m∗(τm◦ω̃n).
This composition is a path in R from 0 to m+ n, and therefore homotopic to ω̃m+n,

ω̃n+m ≃ ω̃m ∗ (τm ◦ ω̃n), (B)

as can be seen using the straight-line homotopy ft = (1− t)ω̃n+m + tω̃m ∗ (τm ◦ ω̃n).
We now have everything in place to construct a homomorphism of Z to the fundamental

group of the circle. Define the map

Φ: Z → π1(S
1, 1)

n 7→ [ωn].

Proposition 8.4. The map Φ: Z → π1(S
1, 1), Φ(n) = [ωn], is a group homomorphism.

Proof. We need to show that [ωm+n] = [ωm] • [ωn]:

Φ(m+ n) = [ωm+n]
(A)
= [p ◦ ω̃m+n]
Lemma (8.3)(2)+(B)

= [p ◦ (ω̃m ∗ (τm ◦ ω̃n))]
Lemma (8.3)(3)

= [p ◦ ω̃m ∗ p ◦ τm ◦ ω̃n]

= [p ◦ ω̃m] • [p ◦ τm ◦ ω̃n]

τm∈Deck(p)
= [p ◦ ω̃m] • [p ◦ ω̃n]

(A)
= [ωm] • [ωn]

= Φ(m) • Φ(n).

The philosophy of the proof is that we have shown something about loops on S1 by consid-
ering a cover of S1, p∞ : R → S1, and working in R. Things are very simple in R: the crucial
property (B) is easy to prove and shows that the composition of two lifts ω̃m and ω̃n (up to a
reparametrization given by the deck transformation τm) is homotopic to the lift ω̃m+n. Using
the property that “homotopies descend” and “paths descend”, we can transfer things proved
“upstairs” to “downstairs”.

What the proof does not show yet, is that the homomorphism Φ is bijective: we don’t know
whether Φ hits all the elements of π1(S

1, 1), and whether two distinct n ̸= m give rise to distinct
classes [ωn] and [ωm]. The latter is equivalent to the important statement that for all m ∈ Z,
ωm ≃ e ⇔ m = 0 (where e is the constant loop at 1). This statement is non-trivial, and relies
on the fact that homotopies in the base space of a covering “lift” to homotopies in the covering
space.



8.3 The homotopy lifting property
Recall the convention that for a homotopy F : Y × I → X we write ft(y) = F (y, t).

Definition 8.5. Let p : Z → X be a map. Then p has the Homotopy Lifting Property (HLP) if
given a homotopy F : Y × I → X and a lift g : Y × {0} → Z of f0, so that f0 = p ◦ g, there
exists a unique homotopy F̃ : Y × I → Z such that

(i) f̃0 = g;

(ii) p ◦ F̃ = F .

In terms of diagrams,
Y × {0} Z

Y × I X

g

ι p

F

F̃

Recall that we use the notation Y ↪→ X to denote the inclusion map of a subspace. The diagram
is required to commute, i.e., all compositions coincide (for example, p ◦ g = F ◦ ι). The dashed
line means that we require the existence of a map F̃ making the diagram commute. Note that
Condition (i) above says that the upper triangle in the diagram commutes (f̃0 = F̃ ◦ ι = g0) and
Condition (ii) is equivalent to the commutativity of the lower triangle.

An important special case is the Path Lifting Property, or homotopy lifting property for
paths.

Definition 8.6. Let p : Z → X be a map. Then p satisfies the homotopy lifting property for paths,
or the Path Lifting Property (PLP), if for any path f : I → X with f(0) = x0 and x̃0 ∈ p−1(x0),
there exists a unique path f̃ : I → Z with f̃(0) = x̃0 and p ◦ f̃ = f .

Note that the path lifting property is a special case of the HLP with Y = {pt}. In this case,
the homotopy F is simply a path

F : {pt} × I → X,

f0 : {pt} × {0} → X is simply a point x0 ∈ X , and g : {pt} × {0} is simply a point x̃0 ∈ Z.
Denoting f(t) = F (pt, t), we recover Definition 8.6.





Lecture 9

In this lecture we use the Homotopy Lifting Property to prove that the fundamental group of the
circle is isomorphic to Z. We will use the following result about coverings.

Proposition 9.1. Covering maps satisfy the homotopy lifting property.

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Covering

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Base space

Figure 9.23: The covering map C− {0} → C− {0}, z 7→ z2 with the liftings of two paths (a
vertical and a horizontal line).

9.1 The fundamental group of the circle
Theorem 9.2. The map Φ: Z → π1(S

1, 1), n 7→ [ωn], is a group isomorphism.

Proof. We already saw that Φ is a homomorphism, and only need to show that it is bijective.
We first show that the map is surjective: if [α] ∈ π1(S

1, 1) then there exists n ∈ Z with
[α] = [ωn]. Consider again the cover p = p∞ : R → S1, t 7→ exp(2πit). Since the covering p
satisfies the HLP by Proposition 9.1, and hence also the PLP, given a loop α there exists a unique
lift α̃ : I → R such that
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(i) p ◦ α̃ = α;

(ii) α̃(0) = 0.

Since α(1) = 1 (α is a loop starting and ending at 1 ∈ S1) and p ◦ α̃ = α, we have α̃(1) ∈
p−1(1) = Z, say α̃(1) = n.

3

2

1

0

−1

1

p∞

1

Therefore α̃
∂≃ ω̃n, since both are paths from 0 to n in R, with a homotopy given by the

straight-line homotopy ft = (1− t)α̃ + tω̃n. Since homotopies descend, we get

α = p ◦ α̃ ∂≃ p ◦ ω̃n = ωn,

which implies [α] = [ωn].

To show injectivity, assume that Φ(n) = [ωn] = [e], i.e., ωn
∂≃ e, the constant loop. This

means that there is a homotopy of loops

F : I × I → S1

with f0 = ωn, f1 = e, and ft(0) = ft(1) = 1 for all t. Define g : I × {0} → R by setting
g(s, 0) = ω̃n. By Proposition 9.1, the covering p satisfies the HLP, and we therefore have a
homotopy F̃ : I × I → R such that f̃0 = g and p ◦ F̃ = F . The other end of the homotopy, f̃1,
satisfies p ◦ f̃1 = e, the constant loop. Therefore:

• f̃0(0) = 0 since f̃0 = ω̃n;

• f̃t(0) ∈ Z since p ◦ f̃t(0) = ft(0) = 1;

• f̃1(s) ∈ Z since p ◦ f̃1(s) = e(s) = 1;

• f̃t(1) ∈ Z since p ◦ f̃t(1) = ft(1) = 1;

• f̃0(1) = n since f̃0 = ω̃n.



Since we consider R with the Euclidean (metric) topology, a continuous map that only takes
values in Z is constant (the continuous image of a connected topological space is connected).
Therefore,

0 = f̃0(0) = f̃t(0) = f̃1(s) = f̃t(1) = f̃0(1) = n.

This completes the proof.





Lecture 10

In this lecture we will complete the last missing piece in the derivation of the fundamental group
π1(S

1, 1). We restate the result.

Proposition 10.1. Covering maps satisfy the homotopy lifting property.

10.1 The local Homotopy Lifting Property
Consider the special case where p : X̃ → X is a covering such that X̃ =

⊔
β V

β, with each
V β ∼= X . Let F : Y×I → X and a lift g : Y×{0} → X̃ such that f0 = p◦g. If g(Y×{0}) ⊂ V β

for some β, then we can lift the homotopy F to a homotopy F̃ that extends g by simply applying
the homeomorphism qβ : X → V β to F that is inverse to p|V β . In general, however, we can only
do this construction “locally”, that is, within an open set Uα, and need to make sure that it can be
extended.

Lemma 10.2. Let p : X̃ → X be a covering and let F : Y × I → X be a homotopy. Let
g : Y ×{0} → X̃ be such that p ◦ g = f0. Then for every y0 ∈ Y there exists an open set N with
y0 ∈ N ⊂ Y and a unique homotopy (depending on N )

F̃N : N × I → X̃

such that p◦ F̃N = F |N×I and (f̃N)0 = g|N×{0}. Moreover, if M is another such neighbourhood,
with y0 ∈ M ⊂ Y , then

F̃M |(M∩N)×I = F̃N |(M∩N)×I = F̃M∩N . (10.1)

For the proof we require a special version of the Lebesgue Covering Lemma.

Lemma 10.3. Let I =
⋃

α Iα an open cover. Then there exists ε > 0 such that for every A ⊂ I
with diam(A) < ε, A ⊂ Iα for some α.

Proof of Lemma 10.2. Let p : X̃ → X be a covering map. Assume we have a homotopy
F : Y × I → X and “initial data” g : Y → X̃ , so that p ◦ g = f0. By the definition of a covering,
we have an open cover {Uα} of X , and for each α a collection of disjoint subsets {V β

α } of
X̃ such that p−1(Uα) =

⊔
V β
α , and the restriction p|V β

α
: V β

α → Uα is a homeomorphism. For
every pair (α, β), denote by qα,β : Uα → V β

α the inverse of this homeomorphism. Since F is
continuous, for every (y, t) ∈ Y × I there exists an open neighbourhood N × (a, b) ⊂ Y × I
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and an index α such that F (y, t) ∈ Uα for (y, t) ∈ N × (a, b). For every fixed y and as t ranges
over I , we get various subsets with this property, and since I is compact, there are finitely many
such Ni × Ii covering {y} × I . Set N = ∩iNi. By Lemma 10.3 we can choose a sufficiently
fine partition 0 = t0 < t1 < · · · < tn = 1 such that every interval (tj, tj+1) is contained in one
of the Ii. Therefore, every i there is an α with F (N × (ti, ti+1)) ⊂ Uα.

We now claim that there is a sequence of maps F̃ k
N such that

1. F̃ k
N : N × [0, tk] → X̃ is a lift of F |N×[0,tk];

2. (F̃ k
N)0 = g|N ;

3. F̃ k+1
N |N×[0,tk] = F̃ k

N .

Moreover, these three properties determine the sequence {F̃ k
N} uniquely. We then set FN = F n

N .
We construct the sequence of maps F̃ k

N by induction. Clearly, there is only one way to define
F̃ 0
N on N × [0, 0] such that (F̃ 0

N)0 = g|N . Assume now that we have a sequence of maps F̃ j
N up

to j = k. By assumption, there is an index α such that F (N × [tk, tk+1]) ⊂ Uα. By making N
smaller, if necessary, we can assume that F̃ k

N |N×{tk} ⊂ V β
α for some β, and that if we define

Ẽ = qα,β ◦ F |N×[tk,tk+1],

then
Ẽ|N×{tk} = F̃ k

N |N×{tk}.

Now define the extension

F̃ k+1
N (z, t) =

{
F̃ k
N(z, t), t ≤ tk

Ẽ(z, t) t ∈ [tk, tk+1].

By the Pasting Lemma, F̃ k+1
N is continuous. By construction, the resulting map satisfies condi-

tions (1)-(3) above.
Assume now that we have two maps, F̃N , F̃ ′

N , constructed in this fashion. It is enough to
show that, for any z ∈ N , F̃N |{z}×I = F̃ ′

N |{z}×I . As before, let 0 = t0 < t1 < · · · < tm = 1 be a
partition such that F ({z} × [tj, tj+1]) ⊂ Uα. We proceed by induction. It is clear that both maps
have to coincide on {z} × [0, 0], as both have to match g(z, 0) there. Assume that F̃ ′

N = F̃N

on [0, tk]. Since [tk, tk+1] is connected, there exists a unique β such that F̃N({z} × [tk, tk+1]) is
contained in V β

α . Similarly, there is a unique β′ such that F̃ ′
N({z} × [tk, tk+1]) is in V β′

α . But
since F̃N(z, tk) = F̃ ′

N(z, tk), we have to have β = β′. By construction of the extension Ẽ, the
two maps also coincide on {z} × [0, tk+1].

The proof also shows that if we take two neighbourhoods N , M with the properties just
derived, then by uniqueness we have F̃M |(M∩N)×I = F̃N |(M∩N)×I .

Proof of Proposition 10.1. Cover Y × I with open sets N × I , as guaranteed by Lemma 10.2.
We then get a family of lifts F̃N : N × I → X̃ that coincide on the intersection of two sets in the
cover. Hence, by the Pasting Lemma, they are continuous and therefore lift F .



Lecture 11

We computed the fundamental group of some elementary spaces, but haven’t really seen what
this means yet. For example, if we denote the closed disk in C ∼= R2 by

D2 := {z ∈ C | |z| ≤ 1},

then
π1(D2, 1) = {0}, π1(S

1, 1) ∼= Z.

What does this say about the underlying topological spaces? As we will see, this implies (for
example) that S1 cannot be a retract of D2, which in turn has other consequences such as the
Brouwer Fixed Point Theorem (a map D2 → D2 has a fixed-point). Ultimately, we would like to
show that the fundamental group is a homotopy invariant: homotopy equivalent spaces have the
same fundamental group. We first need to study how the fundamental group reacts to continuous
maps between spaces.

11.1 Induced homomorphisms
Recall that a pair of spaces is a pair of topological spaces (X,A) with A ⊂ X .

Definition 11.1. A map of pairs

f : (X,A) → (Y,B)

is a map f : X → Y such that f(A) ⊂ B.

Example 11.2. The typical example is when A = {x0} and B = {y0}, in which case we write
f : (X, x0) → (Y, y0) to denote a map with f(x0) = y0.

Example 11.3. Consider the two-fold cover f : (S1, 1) → (S1, 1), z 7→ z2.

Definition 11.4. The induced homomorphism of f : (X, x0) → (Y, y0) is the map

f∗ : π1(X, x0) → π1(Y, y0)

[α] 7→ [f ◦ α].

The induced homomorphism is also sometimes called a push-forward.

Lemma 11.5. The map f∗ is a group homomorphism.
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Proof. We first have to verify that this is a well-defined map, i.e., that if α
∂≃ β then f ◦α ∂≃ f ◦β.

This is clear: if F : I × I → X is a homotopy with f0 = α and f1 = β, then G = f ◦ F is
a homotopy from f ◦ α to f ◦ β. To show that f∗ is a homomorphism, we need to show that
f∗([α] • [β]) = f∗([α]) • f∗([β]). Since

f∗([α] • [β]) = f∗([α ∗ β]) = [f ◦ (α ∗ β)]

and
f∗([α]) • f∗([β]) = [f ◦ α] • [f ◦ β] = [(f ◦ α) ∗ (f ◦ β)],

we are left with showing that f ◦ (α ∗ β) ∂≃ (f ◦ α) ∗ (f ◦ β). Note that, by definition of the
concatenation of paths,

(f ◦ α) ∗ (g ◦ β) =
{
f ◦ α(2s) s ≤ 1/2

f ◦ β(2s− 1) s ≥ 1/2
.

which is the same as the definition of f ◦ (α ∗ β). This completes the proof.

Example 11.6. Consider the covering map p2 : (S
1, 1) → (S1, 1), z 7→ z2. Let ωn : I → S1 be

the map ωn(s) = exp(2πins). Then p2 ◦ωn = ω2n, and (p2)∗([ωn]) = ([ω2n]). The induced map
on Z is the doubling map

π1(S
1, 1) π1(S

1, 1)

Z Z

(p2)∗

∼= ∼=

n7→2n

One similarly derives the induced map for z 7→ zd.

The next lemma shows that the fundamental group is a functor.

Lemma 11.7. The induced homomorphism satisfies the properties:

1. (Id(X,x0))∗ = Idπ1(X,x0);

2. If f : (X, x0) → (Y, y0) and g : (Y, y0) → (Z, z0), then

(g ◦ f)∗ = g∗ ◦ f∗

Proof. The first property is obvious: if nothing happens at the topological level, then nothing
can happen at the algebraic level. For the second property, note that

(g ◦ f)∗([γ]) = [g ◦ f ◦ γ] = g∗([f ◦ g]) = (g∗ ◦ f∗)([γ]).

An immediate consequence is that the fundamental group maps homeomorphic spaces to
isomorphic groups. This allows to distinguish spaces: if two spaces X and Y have different
fundamental group, they cannot be homeomorphic.



Theorem 11.8. If f : (X, x0) → (Y, y0) is a homeomorphism, then f∗ : π1(X, x0) → π1(Y, y0)
is a group isomorphism.

Proof. We apply Lemma 11.7(1) and (2) with g = f−1. Then

Idπ1(X,x0) = (Id(X,x0))∗ = (f−1 ◦ f)∗ = (f−1)∗ ◦ f∗,

and similarly (reversing the role of f−1 and f ) Idπ1(X,x0) = f∗ ◦ (f−1)∗, which shows that
(f−1)∗ = f−1

∗ .

Example 11.9. Since π1(D2, 1) = {0} and π1(S
1, 1) ∼= Z, (D2, 1) ̸∼= (S1, 1).

In the following lectures we will see that this extends to homotopy equivalence.

11.2 Categories and functors
A category C consists of objects obj(C), for any ordered pair of objects (a, b) a set HomC(a, b)

whose elements are called morphisms or arrows (often written, a
f→ b) and composition maps

HomC(a, b)× HomC(b, c) → HomC(a, c), (f, g) 7→ g ◦ f , such that

1. (associativity) if f ∈ HomC(a, b), g ∈ HomC(b, c) and h ∈ HomC(c, d), then h ◦ (g ◦ f) =
(h ◦ g) ◦ f ;

2. (identity) for every a ∈ obj(C) there exists ida ∈ HomC(a, a) such that f◦ida = idb◦f = f
for any f ∈ HomC(a, b).

In applications, the objects are often sets with a certain structures (vector spaces, topological
spaces, groups) and the morphisms are structure-preserving maps between them (linear maps,
continuous functions, group homomorphisms). While in these examples the objects are denoted
by V , X , or G, the lower-case notation for objects in an arbitrary category indicates that there is
no a priori requirement for these to be sets.

Let C, D be two categories. A functor F : C → D assign to every object a ∈ obj(C)
an object F (a) ∈ obj(D), and to every morphism f ∈ HomC(a, b) a morphism F (f) ∈
HomD(F (a), F (b)), in such a way that

1. F (ida) = idF (a);

2. if f ∈ HomC(a, b) and g ∈ HomC(b, c), then F (g ◦ f) = F (g) ◦ F (f).

Example 11.10. Let Top0 denote the category whose objects are pointed topological spaces
(X, x0), and whose morphisms are maps of pairs (X, x0)

f→ (Y, y0). Let G be the category of
groups, whose morphisms are group homomorphisms. Then the fundamental group π1 is a
functor:

π1 : Top0 → G.

1. Every object (X, x0) is assigned to a group π1(X, x0);



2. Any map (X, x0)
f→ (Y, y0) gives rise to a group homomorphism π1(X, x0)

f∗→ π1(Y, y0),
where we write f∗ = π1(f);

3. The identity gets mapped to the identity: (Id(X,x0))∗ = Idπ1(X,x0);

4. We have the property that (g ◦ f)∗ = g∗ ◦ f∗.

A functor as defined here is also called a covariant functor, because it preserves the direction
of arrows. A contravariant functor is one that reverses the direction.

The language of categories and functors, sometimes also called “abstract nonsense”, forms
the basis of the modern treatment of many fields of mathematics, including algebraic geometry,
number theory, and algebraic topology. It allows the study of structural similarities between
mathematics concepts in an elegant way, and in particular it allows to transfer topological ideas
to other fields of mathematics.



Lecture 12

In the previous lecture we saw that the fundamental group is a functor: maps between pointed
topological spaces get assigned to group homomorphisms in a way that preserves the identity
map and compositions. We also saw that homeomorphisms correspond to isomorphisms in
the category of groups. In this lecture we will study the effect of retractions, and deformation
retracts, on the fundamental group.

12.1 Retractions
Let (X,A) be a pair of topological spaces, witht A ⊂ X . Recall that a retraction is a map
r : X → A such that r|A = IdA.

Example 12.1. The map C− {0} → S1, z 7→ |z|, is a retraction.

A kind of converse to a retraction is the inclusion ι : A ↪→ X . We have the composition
r ◦ ι = IdA, and the reverse composition ι ◦ r : X → X . In diagrams,

A A

X X

ι

IdA

ιr

ι◦r

where the arrow with hook ↪→ is used to emphasize that the map is injective, while the arrow
with two tips ↠ is used to emphasize that the map is surjective, or onto. A retract r is called a
deformation retract, if

ι ◦ r A≃ IdX ,

which means that there is a homotopy from ι ◦ r to the identity IdX that does nothing on A.

Proposition 12.2. Let A ⊂ X , r : X → A a retraction, and ι : A → X the inclusion. Let
x0 ∈ A and let r∗ : π1(X, x0) → π1(A, x0) and ι∗ : π1(A, x0) → π1(X, x0) be the induced
(push-forward) maps between the fundamental groups. Then:

1. r∗ is surjective and ι∗ is injective;

2. If r is a deformation retract, then r∗ and ι∗ are isomorphisms.
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Note that, in particular, for a deformation retract r, the map

(ι ◦ r)∗ : π1(X, x0) → π1(X, x0)

is an isomorphism (though it may not be the identity, as is the case with (r ◦ ι)∗).

Proof. The first claim is clear: since Idπ1(A,x0) = (r ◦ ι)∗ = r∗ ◦ ι∗, ι∗ has to be injective
(otherwise the composition couldn’t be injective) and r∗ has to be surjective (otherwise the
composition couldn’t be surjective).

To show that r∗ is an isomorphism if r is a deformation retract, it is enough to show that
r∗ is injective. Let [γ] ∈ π1(X, x0) and assume that r∗([γ]) = [r ◦ γ] = [eA], or equivalently

r◦γ ∂≃ eA, where eA is the constant loop at x0 in A. We need to show that in this case, [γ] = [eX ],

or γ
∂≃ eX , where eX is the constant loop at x0 in X .

As r ◦ γ is a loop in A ⊂ X , ι ◦ r ◦ γ it is a loop in X , and ι ◦ r ◦ γ
∂≃ eX by the same

homotopy that takes r ◦ γ to eA. By the transitivity of homotopy, it is therefore enough to show
that

ι ◦ r ◦ γ ∂≃ γ.

This follows by simply applying the homotopy from ι◦ r to IdX to the loop γ. More precisely, let
F : X × I → X be the homotopy from ι ◦ r to IdX , so that f0 = ι ◦ r and f1 = IdX . Construct a
new homotopy G : I × I → X by setting G(s, t) = F (γ(s), t). Then g0 = ι ◦ r ◦ γ and g1 = γ.
This concludes the proof.

12.2 Homotopy invariance
So far we have seen that deformation retracts give rise to isomorphic fundamental groups. We
next show that this holds more generally for homotopy equivalence.

Proposition 12.3. Let f : X → Y be a homotopy equivalence. Then for any x0 ∈ X , the induced
map f∗ : π1(X, x0) → π1(Y, f(x0)) is an isomorphism.

Proof. Let g : Y → X be a homotopy inverse, so that g ◦ f ≃ IdX and f ◦ g ≃ IdY . Set
y0 = f(x0) and x1 = g(y0). The composition g ◦ f thus gives rise to a homomorphism of
fundamental groups

(g ◦ f)∗ : π1(X, x0) → π1(X, x1)

[γ] 7→ [g ◦ f ◦ γ].

Let K : X × I → X be a homotopy from IdX to g ◦ f , and define a path h : I → X from x0

to x1 by h(t) = K(x0, t). By Proposition 6.1 (Lecture 6), this path induces an isomorphism of
fundamental groups

βh : π1(X, x0) → π1(X, x1)

[γ] 7→ [h ∗ γ ∗ h],



x0

x1

y0

f

g

h

where h(t) = h(1 − t) is the inverse path, from x1 to x0. We claim that βh = (g ◦ f)∗. To
show that these homomorphisms coincide, for any [γ] ∈ π1(X, x0) we will construct a homotopy
between h ∗ γ ∗ h and g ◦ f ◦ γ.

Define first a homotopy

ht(s) = H(t, s) =

{
h(s) if s ≥ t

h(t) if s ≤ t
,

so that h1(s) = h(1) = x1 and h0(s) = h(s). In addition, define the homotopy

γt(s) = K(γ(s), t),

which consists in applying the homotopy from IdX to g ◦ f to the loop γ. In particular, γ0 = γ
and γ1 = g ◦ f ◦ γ. Finally, consider the homotopy

αt(s) = ht ∗ γt ∗ ht(s).

One checks directly from the definition that the endpoints of each of the concatenated paths
coincide, and that α0 = h ∗ γ ∗ h and α1 = g ◦ f ◦ γ. We therefore have a homotopy

h ∗ γ ∗ h ∂≃ g ◦ f ◦ γ and hence

βh([γ]) = [h ∗ γ ∗ h] = [g ◦ f ◦ γ] = (g ◦ f)∗([γ]).

In particular, (g◦f)∗ = g∗◦f∗ is an isomorphism, and therefore f∗ is injective and g∗ is surjective.
Repeating the proof in the other direction (roles of f and g reversed), shows that f∗ is surjetive
and g∗ is injective, thus finishing the proof that we have an isomorphism.





Lecture 13

The first obvious application of the fact that retractions induce surjective homomorphisms in the
fundamental group is the following.

Proposition 13.1. There is not retract D2 → S1.

Proof. The existence of a retraction would imply a surjection π1(D2, 1) ↠ π1(S
1, 1), but the

fundamental group of the disk is π1(D1, 1) = {0}, and the fundamental group of the circle is
π1(S

1, 1) ∼= Z.

An important consequence of this “no retract theorem” is the celebrated Brouwer Fixed Point
Theorem.

13.1 The Brouwer Fixed Point Theorem
The following important result generalizes the fact that a continuous function f : I → I has a
fixed point, i.e., a point x ∈ I such that f(x) = x. In the case of the interval, this is an easy
consequence of the intermediate value theorem. The generalization to maps from I × I to itself,
or equivalently, from D2 to itself, is surprisingly non-trivial. A proof was found by Luitzen
Egbertus Jan (Bertus) Brouwer in 1910.

Theorem 13.2. (Brouwer Fixed Point Theorem) Every map f : D2 → D2 has a fixed point.

Proof. The proof is by contradiction. Assume that the statement is wrong, and that there is a map
f : D2 → D2 such that f(x) ̸= x for all x ∈ D2. For every x ∈ D2, there is a unique line joining
through x and f(x), parametrized by Lx(t) = (1− t)f(x) + tx for t ∈ R. This line intersects
the boundary circle S1 in exactly in two points, one for which t > 0. Denote this point by r(x).

x
f(x)

r(x)
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We thus get a map r : D2 → S1 such that r(x) = x for x ∈ S1. We next show that this map is
continuous, and thus gives a retraction. Indeed, the function r is given by r(x) = Lx(t∗), where
t∗ is the positive solution to the quadratic equation

|(1− t)f(x) + tx|2 = 1.

Writing this out, we get a quadratic equation with precisely two solutions, only one of which is
positive. From the explicit expression for the solution of a quadratic equation, it follows that such
a t∗ depends continuously on the coefficients of the equation, which in turn depend continuously
on x and f(x). It follows that r : D2 → S1 is continuous.

Exercise 13.3. Show that Theorem 13.2 still holds if we replace (D2, S1) with a pair of spaces
(X,A) such that A ⊂ X , X ∼= D2, and A ∼= S1. Hence, Theorem 13.2 also holds for maps
f × I2 → I2 (where I2 = I × I is the square).

13.2 Applications of the Brouwer Fixed Point Theorem
An application of the Brouwer Fixed Point Theorem is to eigenvectors. Recall that an eigenvector
of a matrix A is a vector v such that Av = λv; the λ is called the eigenvalue. The following
is a special case of the famous Perron-Frobenius Theorem, which has many applications, for
example in graph theory or the theory of Markov chains.

Proposition 13.4. Let A ∈ R3×3 be a matrix with only positive entries. Then A has an eigenvalue
v consisting of only positive entries.

Proof. Consider the simplex

∆ = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1}.

1 1

1

x1 x2

x3

Note that for any non-zero x ∈ R3 with non-negative entries, x/∥x∥1 ∈ ∆, where ∥x∥1 =
|x1|+ |x2|+ |x3| is the 1-norm. Define the map

φ : ∆ → ∆, x 7→ Ax

∥Ax∥1
.



Since all the entries of A are positive, and all the entries of x are non-negative, all the coordinates
of Ax are also positive, and we get a well-defined map from ∆ to itself. Since ∆ ∼= D2 (exercise:
show this!), this map has a fixed point: there exists v ∈ ∆ such that φ(v) = v. For such a v, we
have

Av = ∥Av∥1v,
from which it follows that v is an eigenvalue. Since v is in the image of φ, its entries are all
positive.

Disclaimer: The following treatment of the game HEX is strictly optional, this is not exam
material.

Another application is to the game of HEX, invented by Piet Hein and John Nash independ-
ently in the 1940. The playing board consists of an n× n grid of hexagonal tiles.

Two players alternate in colouring hexagonal tiles black or white. The goal of the first player
is to find a connected path from the bottom to the top consisting of black tiles, while the goal of
the second player is to find a path from the left to the right consisting of white tiles. Assuming
the players manage to fill the board, the result will look something like this:

It should be intuitively clear (and easy to show) that if there is a path of one colour connecting
the bottom to the top end, then there cannot be a path of the opposite color connecting the left to
the right end, and vice versa. What is less clear is that there is no possibility of having a draw:

https://en.wikipedia.org/wiki/Piet_Hein_(scientist)
https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.


on of the players always wins. Put differently, it is impossible to colour the tiles black and white
in such a way that no path exists connecting opposing sides.

Theorem 13.5. Given an n × n board of hex with all the tiles coloured either black or white,
there exists a path of one colour connecting the either the top and bottom sides, or the left and
right sides.

A proof of this Theorem using the Brouwer Fixed Point Theorem (and, in fact, a proof of
the Fixed Point Theorem using this), can be found in the paper “Using Brouwer’s fixed point
theorem” by Björner, Matoušek and Ziegler.

https://arxiv.org/pdf/1409.7890.pdf
https://arxiv.org/pdf/1409.7890.pdf


Lecture 14

Another important application is the Borsuk-Ulam Theorem, which often goes hand-in-hand
with the Brouwer Fixed Point Theorem.

14.1 The Borsuk-Ulam Theorem
Theorem 14.1. (Borsuk-Ulam) Let f : S2 → R2 be a map. Then there exists a point x ∈ S2 with
f(x) = f(−x).

The theorem thus states that for any continuous function from the sphere to R2 there are two
antipodal points for which the function has the same value. One can interpret this as saying, for
example, that there are always two antipodal points on the earth’s surface with equal temperature
and equal pressure (assuming these two are continuous functions). The theorem, which also
holds in dimension n ≥ 2, was first proven by Karol Borsuk, who in turn attributes the problem
formulation to Stanislaw Ulam. It has remarkable ramifications and applications, an overview of
which can be found in the book “Using the Borsuk-Ulam Theorem” by Jiři Matoušek.

To prove the Borsuk-Ulam Theorem we need a series of auxiliary results, which are interesting
in their own right. These relate to the concepts of even and odd maps, and null homotopy.

An involution is a map h : X → X such that h(h(x)) = x. In this case, we often write
h(x) = −x. Typical examples of spaces with involution are the spaces Dn, Sn or Rn, with −x
just the additive inverse of x.

Definition 14.2. Let X, Y be spaces with involution. A map f : X → Y is called odd if
f(−x) = −f(x), and even if f(−x) = x for all x ∈ X .

Clearly, a map does not need to be either odd or even.

Example 14.3. The map p2 : S
1 → S1, z 7→ z2 is even. The sine function is odd, while the

cosine function is even. The identity map IdRn is odd.

Exercise 14.4. Show that the composition of odd maps is odd and that the composition of even
maps with either even or odd maps is even.

Definition 14.5. A map f : X → Y is called null-homotopic if f is homotopic to a constant
map. A pointed map f : (X, x0) → (Y, y0) is called null-homotopic relative to the basepoint if
there is a homotopy f : X × I → Y such that f0 = f and f1 = ey0 , with ft(x0) = y0.
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If f is null-homotopic relative to the basepoint, we write f
x0≃ e. If a map f : X → Y is

homotopic to a constant map ey0 , and if x0 is such that f(x0) = y0, then this does not necessarily
mean that the pointed map f : (X, x0) → (Y, y0) is null-homotopic. The added requirement is
that each map ft in the homotopy should map x0 to y0.

We will first show that odd maps from S1 to S1 cannot be null-homotopic. We will then use
this to show that any odd map from S2 to R2 has to have a root, and finally use this to establish
Borsuk-Ulam Theorem, by noting that for a function f : S2 → R2, the function f(x)− f(−x) is
odd. Before we begin, we state a lemma that will be useful on several occasions.

Lemma 14.6. Let p : X̃ → X be a covering and let γ : I → X be a loop such that γ
∂≃ ex0 . Let

x̃0 ∈ p−1(x0) and γ̃ the lift of γ with γ̃(0) = x̃0. Then γ̃
∂≃ ex̃0 .

Proof. Let F : I × I → X be a homotopy with f0 = γ and f1 = ex0 . By the homotopy lifting
property, there is a unique homotopy F̃ : I × I → X̃ with f̃0 = γ̃.

ex0

x0 x0

γ

F

ex̃0

x̃0x̃0

γ̃

F̃

The paths F (0, t) = x0 (left boundary), F (1, t) = x0 (right boundary) and F (s, 1) = x0

(upper boundary) are all constant paths. By Problem (4.7) (or the path lifting property), constant
paths lift to constant paths, which implies that γ̃ is a loop at x̃0 that is is homotopic to the constant
loop ex̃0 via F̃ .

Proposition 14.7. If f : S1 → S1 is odd, then f is not null-homotopic.

Proof. Assume that f is odd and that f is null-homotopic to a constant map, which without
lack of generality we can assume to be e1 (exercise: why?), via a homotopy F : S1 × I → S1.
Consider the cover p : R → S1, s 7→ exp(2πis). We proceed in two steps.

(1) Use the oddity of f to construct a loop γ : I → S1 based at 1 in such a way that γ lifts to
a path γ̃ from 0 to an odd endpoint 2n+ 1.

Set g = f/f(1). Clearly, this is again odd and has the property that g(1) = 1. We can thus
define a loop γ : I → S1 by setting γ(s) = g(e2πis). Since

eiπ = −1,

we get that γ(s + 1/2) = g(exp(2πis + πi)) = −γ(s) for s ∈ [0, 1/2], where we used the
fact that g is odd. In particular, γ(1/2) = −1. By applying path-lifting to γ, we get a curve

https://www.youtube.com/watch?v=iYYRH4apXDo


γ̃ : I → R with γ̃(0) = 0 and γ̃(1/2) = n + 1/2 for some n ∈ Z, since γ(1/2) = −1 and
p−1(−1) = {m + 1/2: m ∈ Z}. We would like to show that, as we wind on up that road, we
arrive at γ̃(1) = 2n+ 1.

2n+ 1

n+ 1/2

0

1−1

p

Consider the two paths α, β : I → R given by α(s) = n + 1/2 + γ̃(s/2) and β(s) =
γ̃((s+ 1)/2). We then have

• p ◦ α(s) = −γ(s/2) = γ((s+ 1)/2) = p ◦ β;

• α(0) = β(0) = n+ 1/2.

By the uniqueness of lifts, it follows that α = β, and hence

2n+ 1 = α(1) = β(1) = γ̃(1).

This establishes the first part.

(2) Show that the lifted path γ̃ is a loop that is homotopic to the constant loop at 0.

Using the fact that F is null-homotopic, we construct a homotopy from γ to ex0 as follows:

Γ: I × I → S1

(s, t) 7→ F (e2πis, t)

F (1, t)
,

where we use the division over the complex numbers. Clearly, at the boundaries

Γ(s, 0) = γ(s), Γ(s, 1) = 1, Γ(0, t) = Γ(1, t) = 1.

Thus Γ is a homotopy from γ to the constant loop at 1, and by Lemma 14.6, γ̃ is a null-
homotopic loop. Therefore,

0 = γ̃(0) = γ̃(1) = 2n+ 1,

which is not possible if n ∈ Z. We get a contradiction to the assumption that f is null-homotopic,
completing the proof.



e1

1 1

γ

Γ

Corollary 14.8. If f : S2 → R2 is odd, then there exists x ∈ S2 such that f(x) = 0.

Proof. Assume that f is odd, and that f(x) ̸= 0 for all x ∈ S2. The idea is to use f to define
maps g : S1 × I → S2 and p : S2 → S1, such that the composition H = p ◦ g : S1 × I → S1 is
a homotopy from an odd to a constant map, in contradiction to Proposition 14.7.

S1 × I S1

S2

H

g p

Define the map

g : S2 → S1,

x 7→ f(x)

∥f(x)∥ .

Since g(−x) = f(−x)/∥f(−x)∥ = −f(x)/∥f(x)∥, g is again odd. Define the upper hemi-
sphere

U = {(x, y, z) ∈ S2 : z ≥ 0},
and a map p : S1 × I → U by setting

p(eiθ, t) = (t cos(θ), t sin(θ),
√
1− t2).

It follows that p0 is constant and p1 embeds the circle S1 into the equator E = S1×{0} ⊂ S2

(note that here, as usual, we identify C with R2 and eiθ with (cos(θ), sin(θ)), and freely alternate
between these representations). Finally, consider the homotopy

H : S1 × I → S1, H(eiθ, t) = g ◦ p.

Then h0 = g ◦ p0 is a constant map and h1 = g ◦ p1 is odd: this follows from the fact that
both g and p1 are odd. We therefore have a homotopy from an odd map to a constant map, in
contradiction to Proposition 14.7.



Proof of Theorem 14.1. Define the map

g(x) = f(x)− f(−x).

By definition, this is an odd map, so by Corollary 14.8 this has a zero, i.e., there exists an x such
that f(x)− f(−x) = 0.





Lecture 15

In this lecture we will compute the fundamental group of the torus (in any dimension) and of the
n-dimensional sphere, for n ≥ 2. As a consequence, we will see that

Tn ̸≃ Sn.

15.1 Product spaces
The proof of the following is left as an exercise. The main ingredient is the observation that
a map f : Z → X × Y is continuous if and only if the compositions pX ◦ f and pY ◦ f are
continuous, where pX : X × Y → X and pY : X × Y → Y are the projections onto X and Y ,
respectively.

Proposition 15.1. Let (X, x0) and (Y, y0) be pointed spaces. Then

π1(X × Y, x0 × y0) ∼= π1(X, x0)× π1(Y, y0).

Example 15.2. Consider the torus T2 = S1 × S1. Then

π1(T2, (1, 1)) = Z× Z.

There are two types of loops in the embedded torus: that the fundamental group of the torus is
Z2 should therefore not be surprising. Consider for example a loop that winds around one circle
of the torus three times, and two times around the other. The resulting path is the trefoil know,
one of many torus knots.

Figure 1: Examples of knots

1
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15.2 The fundamental group of the sphere Sn

The computation of the fundamental group of Sn for n ≥ 2 uses the stereographic projection.
Fix a point on Sn, for example the “north pole” N = (0, . . . , 0, 1).

x

y

z

N

ϕ(x)

S

1

The stereographic projection is a continuous map φ : Sn − {N} → Rn, by mapping a point
x to the intersection of the line joining N and x with the hyperplane perpendicular to N touching
the south pole S = −N .

Exercise 15.3. Derive the precise form of φ and its inverse φ−1, and show that these are
continuous maps.

Proposition 15.4. For n ≥ 2 and x0 ∈ Sn, π1(S
n, x0) ∼= {0}.

Proof. As the stereographic projection gives a homeomorphism from the open set U1 = Sn −
{N} to Rn, and similarly from U2 = Sn − {S} to Rn, we see that the sphere can be written as a
union of open sets

Sn = U1 ∪ U2,

with U1
∼= Rn and U2

∼= Rn. In addition, also using the stereographic projection, we see
that U1 ∩ U2

∼= Rn − {0}, which is path-connected. Assume without lack of generality that
x0 ∈ U1 ∩ U2 (as Sn is path-connected, the fundamental groups with different basepoints are all
isomorphic).

Given a loop γ : I → Sn, we have a cover I = γ−1(U1)∪γ−1(U2). By the Lebesgue covering
lemma, we can find a subdivision 0 = t0 < t1 < · · · < tm = 1 such that for every subinterval
we have γ([ti−1, ti]) ⊂ U1 or γ([ti−1, ti]) ⊂ U2. Set γi := γ|[ti−1,ti] for 1 ≤ i ≤ m. Then

γ = γ1 ∗ · · · ∗ γm.



If γ([ti−1, ti]) ⊂ Uj and γ([ti, ti+1]) ⊂ Uk for j, k ∈ {1, 2} (the possible cases are that j = k
or j ̸= k), then there exists a path αi in Uj ∩ Uk (which may just be U1 or U2 if the indices are
equal) connecting γ(ti) to x0 (since that space is path-connected). Consider now the new path

β = (γ1 ∗ α1) ∗ (α1 ∗ γ2 ∗ α2) ∗ · · · ∗ (αm−1 ∗ γm).

Since each of the αi−1 ∗ γi ∗ αi is a loop, β is a concatenation of loops. Moreover, each of these
loops is contained in one of U1 or U2 (or both), and since these spaces are homeomorphic to Rn,
each of these loops is homotopic to the constant loop ex0 . Therefore,

β
∂≃ ex0 .

But we also have that
γ

∂≃ β,

using a homotopy that moves each αi ∗ αi to ex0 . It follows that [γ] = [e0], and hence the
fundamental group is the trivial group.

Exercise 15.5. Find out where the argument breaks down for n = 1.

Corollary 15.6. The n-torus Tn is not homotopic to the sphere Sn.





Lecture 16

In this lecture we look at the relationship between isomorphism classes of covers and subgroups
of the fundamental group. This is what is also known as Galois correspondence, due to its
analogy to Galois theory, where one has field extensions instead of coverings and the Galois
group instead of the fundamental group.

Proposition 16.1. Let p : X̃ → X be a covering, x0 ∈ X , and x̃0 ∈ p−1(x0). Then:

(a) The induced homomorphism p∗ : π1(X̃, x̃0) → π1(X, x0) is injective;

(b) If [α] ∈ π1(X, x0) and α̃ is the lift of α with α̃ = x̃0, then α̃ is a loop (i.e., α̃(1) = x̃0) if
and only if [α] ∈ p∗(π1(X̃, x̃0)).

Proof. (a) Assume that [α̃] ∈ π1(X̃, x̃0) maps to [ex0 ], i.e., that p ◦ α̃(0) ∂≃ ex0 . Then by Lemma

14.6 (Lecture 14) we have that α̃
∂≃ ex̃0 .

(b) Clearly, if α̃ is a loop, then [α] = p∗([α̃]), which shows the “only if” direction. For the “if”

direction, assume that [α] = p∗([γ̃]) for some [γ̃] ∈ π1(X̃, x̃0). This means α = p◦α̃ ∂≃ p◦γ̃ = γ.
Just as in the proof of Proposition 14.6, we get a homotopy from α to γ that fixes endpoints, and
that lifts to a homotopy from α̃ to γ̃.

γ

x0 x0

α

F

γ̃

x̃0x̃0

α̃

F̃

As the left and right boundaries, F (0, t) and F (1, t), are constant (x0), these lift to constant
paths. Since the upper boundary F (s, 1) = γ̃(s) is a loop at x̃0, this means that the whole left
and right boundaries are x̃0, and therefore that α̃ is a loop.
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The proposition shows that the image p∗(π1(X̃, x̃0) is a subgroup of π1(X, x0) that is iso-
morphic to π1(X̃, x̃0). This may seem counterintuitive at first, as covering maps are (generally)
surjective.

Example 16.2. Consider the d-fold covering pd : S
1 → S1. Identifying the fundamental groups

with Z, the induced map is n 7→ d · n. Hence, (pd)∗(π1(S
1, 1) ∼= dZ.

Recall that if G is a group and H ≤ G a subgroup, the index of H in G, [G : H], is the
number of right-cosets G/H = {Hg}g∈G.

Definition 16.3. Let p : X̃ → X be a covering and assume that X̃ and X are path-connected.
Then for any x ∈ X ,

deg(p) := |p−1(x)|
is called the degree of the covering.

Exercise 16.4. Show that this is well-defined. Verify whether the conditions of path-connectedness
and the connectedness of X̃ can be relaxed.

Proposition 16.5. Let p : X̃ → X be a covering and assume that X̃ and X are path-connected.
Let x0 ∈ X and x̃0 ∈ p−1(x0). Then

deg(p) = [π1(X, x0) : p∗(π1(X̃, x̃0))].

Proof. Set G = π1(X, x0) and H = p∗(π1(X̃, x̃0)). Let [α] ∈ G and α̃ a lift of α, starting at x̃0

and ending at x̃1 ∈ p−1(x0). If β is another loop with [α] = [β], then by the same argument as in
the proof of Proposition 16.1(b) (see the figure), β lifts to a path β̃ with the same endpoint x̃1, so
that the endpoint only depends on the class of the loop, and not the representative.

β

x0 x0

α

F

β̃

x̃1x̃0

α̃

F̃

Let [h] ∈ H . Then by Proposition 16.1(b), h lifts to a loop h̃ in X̃ , and h ∗ α lifts to a path
h̃ ∗ α̃ from x̃0 to x̃1. From this we get a map from the set of right-cosets H[α] to the endpoints
of lifts α̃:

Φ: G/H → p−1(x0)

H[α] 7→ α̃(1).



We need to show that this map is injective and surjective.
For the injectivity, assume that Φ(H[α]) = Φ(H[β]). Then α̃(1) = β̃(1), and hence α̃ ∗ β̃ is

defined and is a loop at x̃0 in X̃ . It follows that

p∗([α̃ ∗ β̃]) = [p ◦ α̃ ∗ β̃] = [p ◦ α̃ ∗ p ◦ β̃] = [α] • [β] ∈ H,

from which we get that
H[α] = H[α][β][β] = H[β].

For the surjectivity, we see that since X̃ is path connected, there exists a path from x̃0 to any
other point in p−1(x0). Each such path projects to a loop α in X , and Φ maps the corresponding
element H[α] in G/H to α̃(1). Therefore, Φ is a bijection.





Lecture 17

In this lecture we will study free products of groups, a construction that is important in the study
of the fundamental group of various spaces.

Consider for example the figure-eight

b a

Definition 17.1. Let {(Xα, xα)}α be a collection of pointed topological spaces. The wedge sum
of this collection is defined as ∨

α

(Xα, xα) =
⊔
α

Xα/(xα ∼ xβ),

that is, the disjoint union of the Xα with the points xα all identified.

Example 17.2. The figure-eight is S1 ∨ S1 (we omit the basepoints from the notation when it is
not important). The set bouquet is given by S1 ∨ S1 ∨ S1.

S1 ∨ S1 ∨ S1
(S1 ∨ S1) ∨ S1

Note that S1 ∨ S1 ∨ S1 is not the same as (S1 ∨ S1) ∨ S1! The basepoints do play a role, in
the latter we are identifying only two of them.
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If we denote the two loops in the figure-eight S1 ∨ S1 by a and b, and their inverses at a and
b, then intuitively, every loop can be written as a “word”, for example

aaabbbaaabb

This means: go around a 3 times, then around b, around b backwards and again around b, etc.
One can also see that a loop described like this can be “reduced” to a homotopic loop: loops of
the form bb are homotopic to the constant loop, so we can replace them with e, and we can then
remove the constant loops from the expression. It follows that the loop above is homotopic to a
reduced loop of the form

a3bab2 or a3ba−1b2

From this observation one can conjecture the form of the fundamental group of the figure-eight:
take two circles A = S1 and B = S1, joint them at a point x0, take generators a and b of the
fundamental groups of A and B (which are isomorphic to Z), and describe the fundamental
group of the figure-eight as the set of reduced words on a and b, where the inverse of a word is
the word obtained by changing the order of letters and replacing every letter with its inverse (for
example, the inverse of aba2b−3 is b3a−2b−1a−1), and taking as multiplication the concatenation
of words, followed by a reduction. We formalize this process next, using the concept of free
product.

17.1 The free product of groups
Definition 17.3. Let {Gα}α be a collection of groups. A word on these groups is a finite
sequence g1 · · · gm of elements of the gi ∈ Gαi

, and m is the length of the word. The empty
word is denoted by ϵ. The product of two words is the concatenation,

(g1 · · · gm) ∗ (h1 · · ·hn) = g1 · · · gmh1 · · ·hn.

Definition 17.4. A word g = g1 · · · gm is called reduced if gi ̸= eαi
(the unit element of the

group Gαi
) and for any two consecutive letters gi, gi+1, αi ̸= αi+1 (that is, consecutive letters are

not from the same group).

Given any word g on the groups {Gα}α, we can reduce it to a reduced word g′ as follows.

(a) If gi = eαi
, then remove it from g;

(b) If αi = αi+1, then replace gigi+1 with the group element gi · gi+1 from Gαi
.

As every such operation reduces the length of the word by one, the process has to terminate.
Moreover, a word is reduced if and only it can’t be reduced further by the above two operations.

Remark 17.5. A word g can be reduced to a word g′ in different ways, depending on the order
in which the operations are applied. It is not yet obvious that every word reduces to a unique
reduced word.



On the set of reduced words we can define a multiplication as follows. Given reduced words
g = g1 . . . gm and h = h1 · · ·hn, construct a new reduced word g • h by taking the concatenation
g ∗ h, and then reducing the word recursively as follows:

g • h =


g ∗ h if gm, h1 not in same group,
g1 · · · gm−1(gm · h1)h2 · · ·hn if gm, h1 ∈ Gα and gm · h1 ̸= eα

g1 · · · gm−1 • h2 · · ·hn if gm · h1 = eα.

where ∗ is the concatenation of words.
This process eventually leads to a reduced word, denoted by g • h. Define the set

∗αGα = { reduced words on {Gα}α}

Theorem 17.6. The pair (∗αGα, •) is a group, called the free product of {Gα}α. The unit
element is the empy word ϵ = [], and the inverse of an element g1 · · · gm is g−1

m · · · g−1
1 .

Checking that the inverse has the given form is straight-forward. Checking associativity of
the operation requires some work.

Proof. The verification that g • h is again a reduced word follows from the definition: if the
concatenation g ∗ h is not reduced, then it is replaced by a shorter word. As words have finite
length, this process has to terminate in a reduced word. That the empty word is the unit element
follows from the definition of the product •. That the inverse element has the given form is
obvious, but can be shown formally by induction: if m = 1, then g1 • g−1

1 = ϵ (by the definition
of the product) and assuming the statement holds for m− 1, then

g1 · · · gm−1gm • g−1
m g−1

m−1 · · · g−1
1 = g1 · · · gm−1g

−1
m−1 · · · g−1

1 = ϵ.

To have a group structure, what remains is to show associativity, namely that for reduced
words g, h, k we have

(g • h) • k = g • (h • k).
To prove this, set W = ∗αGα for the set of reduced words, and consider the group of bijections
Sym(W ). We will “embed” W into Sym(W ) via an injective map L that is compatible with
multiplication, i.e., L(g • h) = L(g) ◦ L(h), and from this the associativity in Sym(W ) will
naturally lead to the associativity of the product • in W .

To start with, for every element g ∈ Gα we have a map Lg, the left multiplication, such that
Lg(h) = g • h for a word h ∈ W . If g1, g2 ∈ Gα and h = h1 . . . hm, then one easily verifies that

Lg1 ◦ Lg2 = Lg1g2 , (17.1)

and hence that Lg−1 = L−1
g , so that Lg ∈ Sym(W ). For any word g = g1 · · · gm, the map

L : W 7→ Sym(W )

g 7→ Lg1 ◦ · · · ◦ Lgm =: Lg1···gm

is injective, since for any g ∈ W , Lg(ϵ) = g, hence if g ̸= h in W , Lg ̸= Lh in Sym(W ).



Note that, by (17.1), the composition Lg ◦ Lh obeys the same rules as the product •: if
g = g1 · · · gm and h = h1 · · ·hn are reduced words, then

Lg ◦ Lh =


Lg∗h if g1, hm not in same group,
Lg1 ◦ · · · ◦ Lgm−1 ◦ Lgmh1 ◦ L2 ◦ · · · ◦ Ln if gm, h1 ∈ Gα and gmh1 ̸= eα

Lg1 ◦ · · · ◦ Lgm−1 ◦ Lh2 ◦ · · · ◦ Ln if gm · h1 = eα.

From this it follows that Lg•h = Lg ◦ Lh.
The associativity now follows from

L(g•h)•k = Lg•h ◦ Lk

= (Lg ◦ Lh) ◦ Lk

= Lg ◦ (Lh ◦ Lk)

= Lg ◦ Lh•k

= Lg•(h•k).

By the injectivity of L, (g • h) • k = g • (h • k).

A consequence of the associativity is that the order of reduction does not affect the end result:
every word reduces to a unique reduced form.

Example 17.7. Consider two copies of the group Z2 = Z/(2Z), with generators a and b,
respectively. Since a2 = e and b2 = e, all the reduced words consist of alternating sequences
of a and b, for example ababab or babab. The inverse of ab is ba, and therefore the set of words
of even length forms a cyclic subgroup G ∼= Z generated by ab. If H ∼= Z2 is the subgroup
generated by a, then Z2 ∗ Z2 = GH; that is, Z2 ∗ Z2

∼= Z ⋊ Z2, the semi-direct product of these
two subgroups.



Lecture 18

Note that every group Gα is a subgroup of ∗αGα, via the inclusion that maps g to the word
consisting only of g for g ̸= e, and e to the empty word. Let

ια : Gα ↪→ ∗αGα

denote this inclusion. The free product of a collection of groups {Gα}α satisfies the following
universal property.

Lemma 18.1. Let {φα}α be a collection of group homomorphisms φα : Gα → G. Then there
exists a unique map

∗αφα : ∗α Gα → G

such that (∗αφα) ◦ ια = φα.

Proof. Define
(∗αφα)(g1 · · · gm) = φα1(g1) · · ·φαm(gm), (18.1)

where we assumed that gi ∈ Gαi
. This clearly satisfies the property ∗αφα ◦ ια = φα. Moreover,

since every φα is a group homomorphism, for gi, gi+1 ∈ Gα we get φ(gi)φ(gi+1) = φ(gigi+1)
and φ(eα) = e, so that ∗αφα is compatible with the operations bringing a word into reduced form.
Therefore, ∗αφα(g • h) = φ(g)φ(h) and we have a group homomorphism. The requirement that
the restriction to the Gα satisfies ∗αφα ◦ ια = φα leaves one with no other choice than to define
the homomorphism as in 18.1.

18.1 The Seifert-van Kampen Theorem
We now apply the free product to topology. The goal is to reduce the computation of the
fundamental group of an open cover to the fundamental groups of the individual sets in the cover.

Let X =
⋃

α Aα be an open cover and denote by ια : Aα ↪→ X and the inclusion maps.
Assume that x0 ∈

⋂
αAα. The inclusion maps induce maps

(ια)∗ : π1(Aα, x0) → π1(X, x0)

of the fundamental groups with base x0. By Lemma 18.1, these maps induce a map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X, x0),
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and these maps are compatible with the inclusion iα : π1(Aα, x0) ↪→ ∗απ1(Aα, x0), in that
∗α(ια)∗ ◦ iα = (ια)∗.

It is relatively easy to show that if the pairwise intersections Aα ∩ Aβ are path-connected,
then the induced map Φ is surjective. In general, however, it will not be injective: the reason is
that loops in Aα ∩Aβ are accounted for twice in ∗απ1(Aα, x0), once as an element of π1(Aα, x0)
and once as an element of π1(Aβ, x0). To remedy this, we have to factor such loops out, and for
this we need to study the inclusion

ιαβ : Aα ∩ Aβ → Aα,

with the induced maps (ιαβ)∗ of fundamental groups. The whole setup is summarised in the
following “Seifert-van Kampen” commutative diagram:

π1(Aα, x0)

π1(Aα ∩ Aβ, x0) ∗απ1(Aα, x0) π1(X, x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

(18.1)

Note that every ω ∈ π1(Aα ∩ Aβ, x0) is represented in ∗απ1(Aα, x0) as (ιαβ)∗(ω), and as
(ιβα)∗(ω). Define the set

U = {(ιαβ)∗(ω)(ιβα)∗(ω)−1 : α, β, ω ∈ π1(Aα ∩ Aβ, x0)},

and let N be the normal closure of U , i.e., the smallest normal subgroup of ∗απ1(Aα, x0)
containing U . Recall that a subgroup H ⊂ G is called normal if it is closed under conjugation:
gHg−1 = H for g ∈ G. We can now formulate the Seifert-van Kampen Theorem.

Theorem 18.2. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and assume
x0 ∈

⋂
Aα. Then:

(I) If for all α, β, Aα ∩ Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X, x0)

is surjective.

(II) If in addition for every α, β, γ the intersection Aα ∩ Aβ ∩ Aγ is path-connected, then
kerΦ = N , and hence

π1(X, x0) ∼= ∗απ1(Aα, x0)/N.

Example 18.3. Consider the sphere Sn and the cover U1, U2 consisting of the open sets by
removing the north and the south pole, respectively. The intersection U1 ∩ U2 is path-connected,
so we have a surjective map

Φ: π1(U1, x0) ∗ π1(U2, x0) → π1(S
n−1, x0).



Since U1 and U2 are contractible, the fundamental groups are the trivial group, and it follows
that π1(S

n, x0) is also the group with one element. The argument does not extend to S1, since
U1 ∩ U2 is disconnected.

Example 18.4. Let X =
∨

α Xα =
⊔

α Xα/(xα ∼ xβ) be the wedge product of pointed
topological spaces (Xα, xα). Assume that for every α there exists an open neighbourhood Uα

of xα in Xα that is contractible, i.e., deformation retracts to xα. For every α, define Aα =
Xα ∨∨β ̸=α Uβ. Every Aα is an open set in X and x ∈ ⋂αAα, where x = [xα] is the point at
which the Xα are “glued together” (formally, the equivalence class containing the base points
xα). The intersection of any two distinct Aα is the set

∨
α Uα, which deformation retracts to

x.3 The fundamental groups of the intersections Aα ∩ Aβ is thus the trivial group, and by the
Seifert-van Kampen Theorem, it follows that the fundamental group of X is isomorphic to the
free product of the fundamental groups of the Xα:

π1

(∨
α

Xα, x

)
∼= ∗απ1(Xα, xα).

In particular, the fundamental group of the figure-eight, S1 ∨ S1, is isomorphic to the free group
generated by two elements a and b.

Before proving this theorem, we discuss a bit what it means. Any collection of loops
[γi] ∈ π1(Aαi

, x0) gives rise to a loop (ιαi
)∗([γi]) = [ιαi

(γi)] in π1(X, x0), and omitting the
inclusion map we can simply denote it by [γi] ∈ π1(X, x0). The induced map from the free
product then looks as follows:

Φ: ∗α π1(Aα, x0) → π1(X, x0)

[γ1] · · · [γm] 7→ (ια1)∗([γ1]) · · · (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],

where in the last line we consider γi as a loop in X . Thus for the first part, the surjectivity, we
need to derive that every loop in X based at x0 “factors” as a concatenation of loops γ1, . . . , γm,
with each of these in one Aα. This is reminiscent of the derivation of the fundamental group of
Sn for n ≥ 2.

The fact that this map is not injective has to do with the fact that such a factorization is
not unique: if γ is a loop in Aα ∩ Aβ, then it is represented in π1(Aα, x0) as (ιαβ)([γ]), and
in π1(Aβ, x0) as (ιβα([γ]). Each of these can appear as a letter in a word in ∗απ1(Aα, x0), and
replacing one with the other in this word will not change the image of the word under Φ: the
quotient (ιαβ)([γ])(ιβα)([γ])−1 is therefore in the kernel of Φ. The second part of the Seifert-van
Kampen Theorem thus tells us that “factoring out” this kernel gives an isomorphism.

Example 18.5. Let X = Aα ∪ Aβ and consider the setting of (18.1). Take X = R2, Aα =
X −{(1, 0)}, Aβ = X −{(−1, 0)} and x0 = (0, 0) ∈ Aα ∩Aβ . Let ω = [γ] ∈ π1(Aα ∩Aβ, x0)
be a loop that winds around (1, 0).

The loop γ gives rise to different elements in each of the groups considered:
3This is not as obvious: it is not a priori clear that a homotopy in the disjoint union

⊔
Uα implies a homotopy in

the quotient, see Section 2 in the “Additional Material for Weeks 5-6” document.



γ

• Aα ∩ Aβ ≃ S1 ∨ S1 and the fundamental group π1(Aα ∩ Aβ, x0) is the free group on two
generators a and b, with [γ] = a one of them;

• Aα ≃ S1, and (ιαβ)∗([γ]) is a generator of π1(Aα, x0) ∼= Z;

• Aβ ≃ S1, but (ιβα)∗([γ]) = e, the constant loop in π1(Aβ, x0);

• Aα ∪ Aβ = R2 and the image of γ under both (ια)∗ ◦ (ιαβ)∗ and (ιβ)∗ ◦ (ιβα)∗ is the unit
element in the trivial group π1(R2, x0).

• In π1(Aα, x0) ∗ π1(Aβ, x0), the concatenation of elements of π1(Aα, x0) with elements of
π1(Aβ, x0) does not reduce, unless at least one of these is the unit element. In our case:

(ιαβ)∗([γ]) • (ιβα)∗([γ])−1 = (ιαβ)∗([γ])eβ = (ιαβ)∗([γ]).

Note that even if the image of [γ] in π1(Aα, x0) and in π1(Aβ, x0) “looks the same”, we could
still not cancel out concatenations of such elements in the free product π1(Aα, x0) ∗ π1(Aβ, x0),
because as subgroups of this free product, these groups have only the empty word in common. In
the free product, one can only concatenate elements from different groups, combining adjacent
elements only if they come from the same group.



Lecture 19

Recall the setting of the Seifert-van Kampen theorem. Let X =
⋃

α Aα be an open cover and
denote by ια : Aα ↪→ X and ιαβ : Aα ∩Aβ ↪→ Aα the inclusion maps. Assume that x0 ∈

⋂
α Aα.

Then the inclusion maps induce maps between fundamental groups, as illustrated in the following
commutative diagram:

π1(Aα, x0)

π1(Aα ∩ Aβ, x0) ∗απ1(Aα, x0) π1(X, x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

Explicitly, each element of ∗απ1(Aα, x0) is a reduced word [γ1] · · · [γm], with [γi] ∈ π1(Aαi
, x0),

no γi the trivial loop, and αi ̸= αi+1 for 1 ≤ i < m. The induced map Φ is defined by

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],

where in the last line we consider γi as a loop in X (formally, ιαi
◦ γi). Recall that the subgroup

N ≤ ∗απ1(Aα, x0) was defined as the normal subgroup generated by elements of the form
(ιαβ)∗([ω])(ιβα)∗([ω])

−1.

Theorem 19.1. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and assume
x0 ∈

⋂
Aα. Then:

(I) If for all α, β, Aα ∩ Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X, x0)

is surjective.
(II) If in addition for every α, β, γ the intersection Aα ∩ Aβ ∩ Aγ is path-connected, then

kerΦ = N , and hence
π1(X, x0) ∼= ∗απ1(Aα, x0)/N.

The first part is a consequence of the following lemma, which was already used in the
derivation of the fundamental group of the sphere Sn for n ≥ 2.
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Lemma 19.2. Let X =
⋃

α Aα be an open cover of a topological space, assume that Aα ∩Aβ is
path connected for all α, β and that x0 ∈

⋂
Aα. Then every loop γ in X factors as

[γ] = [γ1] • · · · • [γm],

with γi a loop in Aαi
.

Proof. Let γ : I → X be given, and consider the open cover I =
⋃

α γ
−1(Aα). Each of the

γ−1(Aα) is the union of open intervals, giving a cover of I by open intervals. By the Lebesgue
Covering Lemma, there is a sequence

0 = t0 < t1 < · · · < tm = 1

such that γ([ti−1, ti]) ⊂ Aαi
for some Aαi

and 1 ≤ i ≤ m. In particular, for every end-point ti
we have that γ(ti) ∈ Aαi

∩ Aαi+1
for 1 ≤ i < m. It follows that for every i ∈ {1, . . . ,m− 1}

there exists a path βi from γ(ti) to x0 in Aαi
∩Aαi+1

, with inverse path βi. We can then consider
the modified path

γ̃ = γ1 ∗ · · · ∗ γm,
where the γi are loops based at x0, defined as

γi =


γ|[t0,t1] ∗ β1 if i = 1

βi−1 ∗ γ|[ti−1,ti] ∗ βi if i ∈ {2, . . . ,m− 1}
βm−1 ∗ γ[tm−1,tm] if i = m

Since the combinations βi ∗ βi are the trivial loop, we have γ
∂≃ γ̃, and hence [γ] = [γ̃] =

[γ1] • · · · • [γm].

Proof of Theorem 20.1 (I). For part (I), let [γ] ∈ π1(X, x0). By Lemma 19.2, we can write
[γ] = [γ1] • · · · • [γm], with each γi a loop in one specific Aαi

. Moreover, we can assume that
every γi is not the trivial loop, and that αi ̸= αi+1 for 1 ≤ i < m− 1 (otherwise we can just join
γi and γi+1 to one loop). This means that when considering [γi] as elements of π1(Aαi

, x0), the
word

[γ1] · · · [γm]
is a reduced word in ∗απ1(Aα, x0). By definition,

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm] = [γ],

which shows that the map is surjective provided the pairwise intersections are path-connected.



Lecture 20

Recall the setting of the Seifert-van Kampen theorem. Let X =
⋃

α Aα be an open cover and
denote by ια : Aα ↪→ X and ιαβ : Aα ∩Aβ ↪→ Aα the inclusion maps. Assume that x0 ∈

⋂
α Aα.

Then the inclusion maps induce maps between fundamental groups, as illustrated in the following
commutative diagram:

π1(Aα, x0)

π1(Aα ∩ Aβ, x0) ∗απ1(Aα, x0) π1(X, x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

Explicitly, each element of ∗απ1(Aα, x0) is a reduced word [γ1] · · · [γm], with [γi] ∈ π1(Aαi
, x0),

no γi the trivial loop, and αi ̸= αi+1 for 1 ≤ i < m. The induced map Φ is defined by

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],
where in the last line we consider γi as a loop in X (formally, ιαi

◦ γi). Recall that the subgroup
N ≤ ∗απ1(Aα, x0) was defined as the normal subgroup generated by elements of the form
(ιαβ)∗([ω])(ιβα)∗([ω])

−1.

Theorem 20.1. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and assume
x0 ∈

⋂
Aα. Then:

(I) If for all α, β, Aα ∩ Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X, x0)

is surjective.
(II) If in addition for every α, β, γ the intersection Aα ∩ Aβ ∩ Aγ is path-connected, then

kerΦ = N , and hence
π1(X, x0) ∼= ∗απ1(Aα, x0)/N.

We outline a the proof of Part (II) of the Seifert-van Kampen Theorem. This follows from
another lemma on the composition of loops. Assume again that X =

⋃
α Aα is an open cover

with x0 ∈
⋂

α Aα. Let [f ] ∈ π1(X, x0). A factorization of [f ] is a sequence

[f1] · · · [fm]
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such that [fi] ∈ π1(Aαi
, x0) and f

∂≃ f1 ∗ · · · ∗ fm. If αi ̸= αi+1 for 1 ≤ i < m and [fi] ̸= eαi

for all i, then such a factorization simply gives a reduced word in ∗απ1(Aα, x0). We consider the
following operations on such words:

• Reduction/expansion: If [fi], [fi+1] ∈ π1(Aα, x0), then

[f1] · · · [fi][fi+1] · · · [fm] ↔ [f1] · · · [fi ∗ fi+1] · · · [fm]

• Exchange: If [fi] = (ιαβ)∗([ω]) and [gi] = (ιβα)∗([ω]) for [ω] ∈ π1(Aα ∩ Aβ, x0), then

[f1] · · · [fi] · · · [fm] ↔ [f1] · · · [gi] · · · [fm]

We call two factorization equivalent if they can be related a sequence of reductions, expansions
or exchanges. Note that in contrast to the reduction of a word, we allow to exchange elements of
π1(Aα, x0) with element from π1(Aβ, x0) that arise from the same element in π1(Aα ∩ Aβ, x0).

Lemma 20.2. Any two factorizations [f1] · · · [fk] and [f ′
1] · · · [f ′

ℓ] of [f ] ∈ π1(X, x0) are equival-
ent.

Proof. Since f
∂≃ f1 ∗ · · · ∗ fk and f

∂≃ f ′
1 ∗ · · · ∗ f ′

ℓ, there exists a homotopy G : I × I → X
with g0 = f1 ∗ · · · ∗ fk and g1 = f ′

1 ∗ · · · ∗ f ′
ℓ. Using an approach similar to the proof of Part (I),

we aim to decompose the homotopy by finding intermediate paths γ0, . . . , γN : I → X such that
γ0 = g0, γN = g1, and each γi has a factorization in such a way that the factorization of γi+1

arises from that of γi by a reduction, expansion, or exchange operation.
(1) We first decompose I × I into rectangles. Consider the open cover I × I ⊂ ⋃α G

−1(Aα).
By the product topology on the square, every open set G−1(Aα) can be written as the union
of open rectangles, and since I × I is compact, we have finitely many such rectangles. The
closure of these rectangles covers I × I , and after a common refinement (or using the Lebesgue
Covering Lemma, Section 6 in Week 3-4 Additional Material), we can assume that we have a
decomposition 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that for
each such rectangle [si, si+1] × [tj, tj+1] there exists an α with G([si, si+1] × [tj, tj+1]) ⊂ Aα.
Since G−1(Aα) is open, there exists an ϵ > 0 such that the small horizontal displacement
[si + ϵ, si+1 + ϵ]× [tj, tj+1] remains in G−1(Aα). By shifting the rectangles in this way to the
left or right, we can ensure that no point lies in more than three rectangles (see Figure 20.24).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 20.24: The subdivision of I × I and the path γ6



Ri Ri+1

γi+1

γi

(2) We next define paths along the rectangles. Let γi be the path from the left boundary to
the right boundary that separates the rectangles R1, . . . , Ri from Ri+1, . . . , RN . In particular, γ0
is the lower boundary and γN the upper boundary, and γi and γi+1 only differ on the boundary of
Ri+1 (γi goes under it, and γi+1 above it). The homotopy from g0 to g1 gives a homotopy from
γi to γi+1, by “pushing γi across Ri+1”, i.e., applying G to a homotopy from the left-and-lower
boundary of Ri+1 to the right-and-upper boundary.

(3) We next associate a loop to every edge of a rectangle. Since every vertex v is in the
intersection of at most three rectangles, it has the property that G(v) ∈ Aα ∩ Aβ ∩ Aγ for some
α, β, γ. By the assumption of path-connectedness, there exists a path hv from G(v) to x0 in
Aα ∩ Aβ ∩ Aγ . If Ri and Ri+1 are adjacent rectangles with G(Ri) ⊂ Aα and G(Ri+1) ⊂ Aβ,
then their common boundary µ defines a path G ◦ µ ∈ Aα ∩ Aβ with endpoints v and w, and
also a loop hv ∗ (G ◦ µ) ∗ hw ⊂ Aα ∩ Aβ . If follows that every γi factors as a product of loops.
Note however that the factorizations of γi and γi+1 have common loops ω, but that these give
rise to different elements [ω], depending on which fundamental group these classes are taken in.

(4) We can now move from a factorization of γi to one of γi+1 as follows. Let [ω] ∈ π1(Aα, x0)
be an element in the factorization of γi that arises from a loop that also corresponds to a boundary
of Ri+1. Replace this element with the corresponding class in π1(Aβ, x0) (exchange operation).
Then replace the loops corresponding to the left and lower boundary with loops correspond-
ing to the upper and right boundaries (reduction, replacement by homotopic loop, and expansion).

(5) The “boundary cases” may need to be treated separately. Altogether, we see that we can
get from a factorization of g0 to a factorization of g1 by a sequence of exchanges, reductions, and
expansions, thus showing that homotopic loops are equivalent in this sense.

Proof of Seifert-van Kampen, Part (II). Let w = [f1] · · · [fm] be a reduced word in ∗απ1(Aα, x0).
If [ω] ∈ π1(Aα ∩ Aβ, x0) and [fi] = (ιαβ)∗([ω]) and [gi] = (ιβα)∗([ω]), then replacing [fi] with
[gi] (performing an exchange operation, and possibly reducing if necessary) gives a word v such
that w • v−1 ∈ N . The same is true if the word is expanded before the exchange and reduced
after it. Therefore, if w = [f1] · · · [fk] and v = [f ′

1] · · · [f ′
ℓ] are two elements in ∗απ1(Aα, x0) that

arise from each other by exchanges, expansions and reductions, we have w • v−1 ∈ N .

If Φ(w) = [e], then e
∂≃ f1 ∗ · · · ∗ fk, so that w constitutes a factorization of e. Moreover, this

factorization is equivalent to the empty factorization ϵ in the sense that they can be transformed
into one another by a sequence of exchanges, expansions and reductions. It follows that w ∈ N ,
and hence kerΦ ⊂ N . The other inclusion is easy.





Lecture 21

In this lecture we discuss a few applications of the Seifert-van Kampen Theorem. We then
introduce the notion of CW complex that allows to describe topological spaces more effectively.

Example 21.1. Let X =
∨

n∈NCn be the wedge product of pointed topological spaces (Cn, x0 =
(0, 0)), where each Cn is a circle centered at (1/n, 0) of radius 1/n in R2. Each such circle is
homeomorphic to S1. In Lecture 18 we saw that

π1

(∨
n∈N

Cn, x0

)
∼= ∗απ1(S

1, x0),

which is isomorphic to the free group generated by copies of Z. Using the fact that products
of countable sets are countable, and countable unions of countable sets are countable, it can be
shown that the fundamental group π1(X, x0) is countable.

Example 21.2. Consider now the “Hawaiian earrings”, defined as

X =
⋃
n∈N

Cn,

with the subspace topology induced from R2.

One might think that this set is the same as an infinite wedge product of Example 21.1, but we
will see that this is not the case. To see this, consider, for each n ∈ N, the retraction rn : X → Cn

that maps all Ci, i ̸= n, to (0, 0) and is the identity on Cn. This induces a sequence of surjective
maps

(rn)∗ : π1(X, x0) → π1(Cn, x0) ∼= Z.
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The product of these maps gives rise to a surjective map

ρ : π1(X, x0) → Πn≥1Z,
[ω] 7→ ((r1)∗([ω]), (r2)∗([ω]), . . . ),

where we identified elements in π1(Cn, x0) with their image in Z. This map is surjective, since
for every sequence of integers {kn}n∈N we can construct a loop in π1(X, x0) that wraps around
Cn kn times in the time interval [1 − 1/n, 1 − 1/(n + 1)] and whose image is {kn}n∈N. Such
a loop φ : I → X is clearly continuous in each interval [1 − 1/n, 1 − 1/(n + 1)]. It is also
continuous at 1, since every open neighbourhood U of x0 ∈ X contains all but finitely many
circles Cn, and hence its preimage φ−1(U) is the complement of a finite union of closed sets,
and as such is open. The product Πn≥1Z is uncountable (we can represent every real number as
an infinite sequence of integers), so that π1(X, x0) also has to be uncountable. The fundamental
group of the wedge product of the Cn, however, is the free product of the groups π1(Cn, x0).
This is the set of all finite (reduced) words that can be assembled from elements in the individual
groups, and this set is countable (prove this!). The fundamental group π1(X, x0) turns out to be
rather complicated.

Exercise 21.3. Find where the construction of a surjection π1(X, x0) → Πn≥1Z in Example 21.2
breaks down if we define X =

∨
n≥1Cn instead of taking the union.

Example 21.4. In some areas of topology, such as knot theory, one is interested in the complement
of certain sets in R3. Let S1 ⊂ R3. Then one can show that X = R3−S1 is homotopy equivalent
to a wedge product S1∨S2. The Seifert-van Kamplen Theorem then implies that π1(X, x0) ∼= Z.
If X = R3 − (A ∪B), where A ∼= S1 and B ∼= S1 are two circles, then the fundamental group
of X differs depending on whether the circles are linked or not! For example, if the circles are
not linked, then one can show that X is homotopy equivalent to S2 ∨ S2 ∨ S1 ∨ S1, and hence
π1(X, x0) ∼= Z ∗ Z. If, on the other hand, the circles are linked, then X is homotopy equivalent
to S2 ∨ (S1 × S1), the wedge product of a sphere and a torus, and hence Seifert-van Kampen
implies that π1(X, x0) ∼= Z× Z.

To be able to compute with, and compare, common topological spaces more effectively,
we introduce the concept of a CW complex. CW complexes are topological spaces that can
be assembled from simpler spaces by “glueing” cells together. Many, but not all, interesting
topological spaces have the structure of a CW complex.

21.1 CW complexes
Definition 21.5. A CW complex is a topological space X that is built up inductively as follows.

1. The zero-skeleton X0 is a discrete set;

2. Given Xn−1, a collection of closed disks {Dn
α} with Dn

α
∼= Bn, and Sn−1

α = ∂Dn
α, with

attaching maps
φα : S

n−1
α → Xn−1,



define
Xn = (Xn−1 ⊔

⊔
α

Dn
α)/ ∼,

where ∼ is the equivalence relation x ∼ φα(x) for all x ∈ Sn−1
α .

3. Define X =
⋃

n X
n, equipped with the weak topology: a set A ⊂ X is open if and only

if A ∩Xn is open in Xn for every n.

The disks Dn
α are called n-cells, and their interiors enα = Dn

α−Sn−1
α are the open n-cells. The

set Xn is called the n-skeleton of the CW complex. A CW complex is called finite-dimensional
if X = Xn for some n, and the largest n for which there are cells in the complex is called the
dimension of the complex. A CW complex is called finite if it has only finitely many cells.

Example 21.6. A one-dimensional CW complex is called a (topological) graph. It consists of
X0 (the vertices), with X1 arising by attaching the endpoints of intervals D1

α to the vertices.

a

b c

d e

Figure 21.25: A graph.

A graph need not be finite. We can take, for example, as nodes X0 = Z, as edges copies
of the unit interval I , and attaching maps φn defined by φn(0) = n and φn(1) = n + 1. The
resulting CW complex is homeomorphic to R.

Exercise 21.7. Show that every connected graph is homeomorphic to a wedge of spheres ∨αS
1.

Example 21.8. We can fill in some of the closed areas of a graph, which gives rise to a two-
dimensional CW complex. Other examples are polyhedra (the cube, the tetrahedron, etc.). The
space Rn can be expressed as a CW complex in many different ways. The CW structure of a
topological space is clearly not unique.

Example 21.9. The torus is an example of a two-dimensional CW complex. The ingredients
are: one point X0 = {x}, two line segments {I1, I2}, and one square D2 (homeomorphic to the
ball B2).

For each of the line segments to the point by means of a map φi : ∂I → X0 (there is only
one way of doing this).



⇒

We then attach the square to the resulting graph by a map φ : ∂D2 → X1, mapping the upper
and lower boundaries to one circle, and the left and right boundaries to the other circle. This
is often visualized by drawing the square and labelling the edges in a way that indicates which
edges are identified in which way:

a

a

b b ⇒
a b

Exercise 21.10. Show that the torus defined in this way is homeomorphic to T2 = S1 × S1.

Exercise 21.11. Show that the sphere Sn is a CW complex with one 0-cell and one n-cell.



Lecture 22

Recall the definition of a CW complex. We will discuss a few interesting examples of CW
complexes and see how to compute the fundamental group using the Seifert-van Kampen
Theorem.

22.1 The Möbius strip and projective space
So far we have basic examples, such as graphs, the torus, and the sphere Sn. In this section we
will revisit the projective plane RP2, and show that it can be characterized by glueing a disk to
the boundary of a Möbius strip. We will then use this characterization as an alternative way of
computing the fundamental group of RP2.

Example 22.1. The Möbius strip M can be defined as I × I by identifying (0, x) with (1, 1− x)
for x ∈ I .

a a ⇒

a

Figure 22.26: The Möbius strip

There is one obvious CW complex structure on the Möbius strip: take 0 cells (the end points
of a), three 1-cells (the line segment a and the upper and lower boundaries of the rectangle), and
one 2-cell, a rectangle itself. This is not the only way to describe the Möbius strip.

The Möbius strip has a circle at its centre, namely the image of I × {1/2} (since (0, 1/2) ∼
(1, 1/2)). The Möbius strip deformation retracts to this circle by taking the homotopy on the
rectangle,

F̃ : (I × I)× I → I × I, ((x, y), t) 7→ (x, (1− t)(y − 1/2) + 1/2).

Since 1− [(1− t)(y − 1/2) + 1/2] = (1− t)(1− y − 1/2) + 1/2, the homotopy carries over
to a homotopy in the quotient. It follows that π1(M) ∼= Z. The Möbius strip also has only one
circle at its boundary, the image of (I × {0})× (I × {1}) under the quotient map.
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Example 22.2. Real projective space RPn. Recall that

RPn = Sn/(x ∼ −x),

the n-sphere with antipodal points identified (equivalently: the set of lines, that is, Rn+1 with
x ∼ y if x = λy for some λ ∈ R). Let q : Sn → RPn, x 7→ [x], be the quotient map.
We can define a CW structure on RPn recursively as follows. Consider the open set U0 =
{[(x0, x1, . . . , xn)] : x0 ̸= 0}. The set RPn − U0 = {[(0, x1, . . . , xn)]} is homeomorphic to
RPn−1. Moreover, since q is a two-sheeted covering map, and the preimage q−1(U0) consists of
the disjoint union of the sets {x0 > 0} and {x0 < 0}, each of which is the interior of an n-ball
that maps homeomorphically to U0, and hence U0

∼= en, an open disk. Setting Dn = {x0 ≥ 0}
and Sn−1 = ∂Dn = {(0, x1, . . . , xn)}, we get the two-fold covering

φ : Sn−1 → RPn−1

as attaching map (where we identified RPn−1 = RPn − U0), with RPn arising as

RPn−1 ⊔Dn/(x ∼ φ(x)).

We can continue this process recursively with RPn−1. As each step adds one open n-cell to the
construction, we get a characterization of real projective space as

RPn = {pt} ∪ e1 ∪ e2 ∪ · · · ∪ en,

with one open n-cell in each dimension.
In low dimensions, we have RP0 = {pt}, RP1 = RP0 ⊔D1/(0 ∼ 1), which characterizes

RP1 as a circle. For RP2, we attach a 2-cell by taking a disk D2 and attaching the boundary
circle S1 to RP1 via the two fold covering S1 → RP1.

One way of thinking about RP2 is to take the closed upper hemisphere of a sphere S2. Each
point there corresponds to a a unique point in RP2, except at the boundary, where we have
to identify antipodal points. But this makes the boundary an RP1. One can visualize the cell
decomposition of RP2 as follows:

p p

γ

γ

Figure 22.27: Cell decomposition of RP2.

The figure shows a 2-dimensional disk whose boundary disk is subdivided into cells that are
identifies (the lines being identified along the arrow direction).



Example 22.3. (RP2 meets the Möbius strip). Consider the cell decomposition of RP2 as given
in Figure 22.27, and let X be the space obtained by removing a closed disk from the interior of
RP2.

p p

γ

γ

Formally, we can describe X as

X = S1 × I/(x, 1) ∼ (−x, 1),

as S1 × I describes the annulus, and the identification simply identifies antipodal points on one
boundary of the annulus, but not on both. We claim that X ∼= M , the Möbius strip. Visually, this
can be seen by first “detaching” the annulus (keeping track of where the identifications happen),

p p

γ

γ

a1 a2 ⇒

γ

γ

a1 a2

a1 a2

and then “reattaching” along γ, where we flip the upper rectangle around and rotate the lower
rectangle by 180 degrees:

γ

γ

a1 a2

a1 a2

⇒
γa1 a2

a2 a1



If we denote the concatenation a = a1 ∗ a2, then we get exactly the characterization of
Figure 22.26, with γ the circle at the centre. As a consequence of this example, we see that we
can obtain the projective plane by glueing a 2-cell D2 to the boundary of a Möbius strip.

Exercise 22.4. Describe the homeomorphism X → M described above explicitly.

Given the above examples, we can compute the fundamental group of RP2 as follows. Recall
the characterization of of RP2 from Figure 22.27, and denote by e2 the interior of the disk.
Consider a cover of RP2 as follows. Consider an open disk B ⊂ e2 in RP2 and a closed disk
C ⊂ B, and define A = RP2 − C (see Figure 22.28). Then RP2 = A ∪B.

p p

γ

γ

ω

x0

Figure 22.28: An open cover of RP2

Fix a base point x0 ∈ A ∩ B. Clearly, π1(B, x0) = 1, the trivial group, since B is just an
open disk. The intersection A ∩ B is homotopic to a circle, represented by a loop ω, so that
π1(A ∩ B, x0) = ⟨[ω]⟩ ∼= Z. The set A, in turn, is the interior of a Möbius strip, as seen in
Example 22.3, with γ representing the inner circle. As seen in Example 22.1, A deformation
retracts to γ (or, more precisely, to a circle homotopic to γ but with basepoint x0, see the figure),
so that π1(A, x0) ∼= ⟨[γ]⟩ ∼= Z.

Since the fundamental group π1(B, x0) is trivial, the free group π1(A, x0) ∗ π1(B, x0) is
generated by [γ]. To get the fundamental group of RP2 using Seifert-van Kampen, we have to
factor out elements that are multiples of

(ιA∩B)∗([ω]),

where ιA∩B is the inclusion of A ∩ B in A. We can think of ω as the outer circle of a Möbius
strip, and γ as the inner circle. Going around ω once corresponds to going around γ twice, so
that

(ιA∩B)∗([ω]) = [γ]2.

By the Seifert-van Kampen Theorem,

π1(RP2, x0) ∼= ⟨[γ]⟩/⟨[γ]2⟩ ∼= Z/2Z.



Lecture 23

45.2 Properties of CW complexes
Recall that we denoted closed cells of dimension n by Dn

α, their boundary by Sn−1
α , and enα =

Dn
α − Sn−1

α the open cell. To simplify notation, we will call the 0-cells, the points in X0, e0α.
Given a CW complex X , for every closed cell Dn

α we have an inclusion map into the disjoint
union of Xn−1 with n-cells, that gives rise to a map into Xn ⊂ X by applying the quotient map
q to it,

Xn−1 ⊔⊔αD
n
α

Dn
α Xn X

qι

where Xn arises by identifying x ∼ φn
α(x) for points x ∈ Sn−1

α . This gives rise to a character-
istic map

Φn
α : D

n
α → X,

and the restriction of Φn
α to enα is a homeomorphism to its image, also denoted by enα. We can

therefore characterize a CW complex as disjoint union of cells enα.

Exercise 45.5. Show that the weak topology on X can be characterized by saying that A ⊂ X is
closed if and only if for each n, α, (Φn

α)
−1(A) is closed in Dn

α.

Definition 45.6. A subcomplex of a CW complex X is a space A that is a union of cells eαn in
X such that for every cell it also contains its closure.

We now study some important properties of CW complexes.

Proposition 45.7. A compact topological subspace of a CW complex X is contained in a finite
subcomplex.

Proof. Let C ⊂ X be a compact set, and assume that C intersects infinitely many cells enα. Then
there exists a sequence of points S = {x1, x2, . . . } ⊂ C so that each xi lies in a different cell.
Using the characterization of the weak topology via the characteristic map one can show that
S is closed in X . Moreover, as every subset of S is closed, the topology on S is the discrete
topology. As a closed subset of C, S is compact, but any compact set in the discrete topology is
finite, so S is finite. It follows that C is contained in finitely many cells. It remains to show that
that a finite union of cells is contained in a finite subcomplex. This can be seen by induction
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on n. The statement is clearly true for n = 0, since a finite union of 0-cells is just a finite set
of points. If n ≥ 1, then for every enα, the image of the attaching map φn

α : S
n−1
α → Xn−1 is

compact, hence contained in finite union of cells of dimension at most n− 1, which by induction
hypothesis are contained in a finite subcomplex A. Attaching Dn

α to this subcomplex gives a
finite complex containing enα.

The letter ’C’ in CW complex means closure finiteness: the closure of every open cell meets
only finitely many other cells. The ’W’ stands for weak topology.

Definition 45.8. A topological space is called normal if any two disjoint closed subsets have
disjoint open neighbourhoods. A topological spaces is called a Hausdorff space, if any two
distinct points have disjoint open neighbourhoods.

Proposition 45.9. A CW complex is normal (and hence Hausdorff).

Definition 45.10. A topological space is called locally contractible if for every x and open
neighbourhood U with x ∈ U ⊂ X there exists an open set V with x ∈ V ⊂ U such that V is
contractible.

Example 45.11. Any open subset of Rn is contractible.

Example 45.12. Consider the Warsaw circle, defined as

W = {(x, sin(1/x) : x ∈ (0, 1]} ∪ ({0} × [−1, 1]) ∪ L,

where L is a curve jointing the first to sets in the union, with the subspace topology.

The Warsaw circle is not locally contractible. If it were, then it would be locally path
connected (if V is a contractible neighbourhood of a point x, then any two points in V can be
connected by a path via the homotopy between the identity on V and the retraction to a point in
V ). It is, however, not locally path connected. To see this, take any point on the piece {0} × I ,
say x = (0, 0). Then every open neighbourhood of x of diameter less than 1 has infinitely many
disconnected points. More precisely, if V = {y ∈ W : ∥y∥ < ε} for ε < 1, then the points
(1/nπ, 0) for integers n > 1/επ are all in V , but are not connected by a path. Note however that
W is path-connected!

Proposition 45.13. CW complexes are locally contractible.

Corollary 45.14. The Warsaw circle is not a CW complex.



Lecture 24

Proposition 24.1. If A ⊂ X is a subcomplex of a CW complex X , then there exists an open set
U ⊂ X with A ⊂ U , and such that U deformation retracts to A.

An important application is that we can apply the Seifert-van Kampen Theorem to decom-
positions X = A ∪ B into subcomplexes A and B such that A ∩ B is again a subcomplex.
For example, if A ⊂ U and B ⊂ V , then π1(U, x0) = π1(A, x0), π1(V, x0) = π1(B, x0), and
π1(U ∩ V, x0) = π1(A ∩B, x0).

In the following, we will derive an important property of the fundamental group of CW
complexes, namely that it depends only on the 2-skeleton! While we can derive this as a
consequence of Proposition 24.1, give outline a proof from scratch, based on the Seifert-van
Kampen Theorem.

Theorem 24.2. For a path-connected CW-complex X with x0 ∈ X2, the inclusion X2 ↪→ X
induces an isomorphism of fundamental groups π1(X

2, x0) ∼= π1(X, x0).

The statement can be interpreted intuitively as saying that by studying loops, we cannot
distinguish higher-dimensional topological properties. Recall, for examples, the fundamental
groups of the spheres and of projective spaces:

π1(RPn) =

{
Z for n = 1,

Z/2Z for n ≥ 2
, π1(S

n) =

{
Z for n = 1,

1 for n ≥ 2

That is, the fundamental group does not give us more information on higher-dimensional
spheres other than that any loop on it is null-homotopic. There are various ways to get higher-
dimensional information. One could study higher-dimensional homotopy groups, arising by
considering maps Sn → X instead of loops (which can be considered as maps S1 → X). A
different approach is via homology and cohomology, which is the subject of more advanced
courses in algebraic topology.

We begin with an observation. Note that if X is a topological space and φα : S
1
α → X

is a map that attaches a 2-cell D2
α to X , then φα defines a loop fα : I → X on X based at

φα(1) by setting fα(t) = φα(exp(2πit)). While this loop may not be null-homotopic in X , it is
null-homotopic in

Y := X ⊔D2
α/(x ∼ φα(x)),

after attaching the cell. If X is path-connected, we can choose a basepoint x0 ∈ X and a path
h : I → X with hα(0) = x0, hα(1) = φα(1), and thus get a loop γα = hα ∗ fα ∗ hα. In this way,
every attaching map gives rise to a loop in Y . The inclusion X ↪→ Y gives rise to a map of
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fundamental groups π1(X, x0) → π1(Y, y0), and the class of every such loop, [γα], is contained
in the kernel of this map.

Proposition 24.3. Let X be a path-connected topological space and for fixed n, let φn
α : S

n−1
α →

X be a collection of attaching maps, and set

Y = X ⊔
⊔
α

Dn
α/(x ∼ φn

α(x)).

Let x0 ∈ X be a point. Then

• If n = 2, then
π1(Y, x0) ∼= π1(X, x0)/N,

where N is the normal subgroup generated by [γα], as defined above.

• If n > 2, then
π1(Y, x0) ∼= π1(X, x0).

Proof. (Sketch) The proof is an application of the Seifert-van Kampen Theorem to a space Ỹ that
deformation retracts to Y . Specifically, for each attached cell Dn

α consider a square Sα = I × I ,
a small path segment pα : I → Dn

α with pα(0) = hα(1) ∈ Sn−1
α and pα(1) ∈ enα, and a map

µα : (I × {0}) ∪ ({1} × I) → Y, (x, 0) 7→ hα(x), (1, y) 7→ pα(y).

Define Ỹ = Y ⊔⊔Sα/ ∼, where the relation ∼ is defined by setting x ∼ µα(x) if x is in the
lower-and-right boundary of Sα, and (0, y) ∼ (0, y′) if (0, y) ∈ Sα and (0, y′) ∈ Sβ . The effect
of this operation is to “lengthen” the paths from the base-point x0 to the cells by turning them
into stripes. The deformation retract of the rectangle to the lower boundary I × {0} induces a
deformation retract of Ỹ to Y .

Choose points yα in each cell enα (and such that they do not lie on the path pα). We now
define the following subsets of Ỹ :

• A = Ỹ −⋃α{yα};

• B = Ỹ −X .

Since B consists of the cells enα with the attached paths, it is contractible and we have π1(B, x0) =
1. By the homotopy that retracts the interior of a ball Bn without a point to its boundary, we see
that A ≃ X . It follows that

π1(Y, x0) ∼= π1(Ỹ , x0) ∼= π1(X, x0)/N,

where N is the normal subgroup generated by the images in π1(A, x0) of elements of π1(A ∩
B, x0). If n > 2, then the cells Dn

α without a point yα are still contractible, so A ∩ B is
contractible and π1(A ∩ B, x0) = 1, from which the claim follows in this case. In the case
n = 2, one gets a loop for every attached cell D2

α that is homotopic to a loop γα (after a basepoint
change, where the original basepoint x0 ∈ X is moved up the line segment to a basepoint that is
in A ∩B).



Proof. (of Theorem 24.2) If X is a finite-dimensional CW complex, then the statement follows
from proposition 24.3 by induction: X = Xn is constructed from Xn−1 by attaching n-cells,
and Proposition 24.3 tells us that this process does not alter the fundamental group if n > 2.
If X is not finite-dimensional, we can still apply the proposition by noting that a loop γ in
X is a compact subset, and therefore contained in a finite subcomplex in some Xn. Since
π1(X

2, x0) ∼= π1(X
n, x0), every such loop is homotopic to a loop in X2, and therefore the map

π1(X
2, x0) → π1(X, x0) is surjective. To see that this is injective, let γ be a loop in X2 that

is homotopic, in X , to the constant loop via a homotopy F : I × I → X . As the image of F
in X is compact, it is contained in a finite subcomplex Xn, and we can assume that n > 2. If
follows that [γ] = 0 in π1(X

n, x0), and we can use the injectivity of π1(X
2, x0) → π1(X

n, x0)
to conclude that γ is null-homotopic in X2.

Note that we can get this result as a consequence of Proposition 24.1. For this, consider
X = Xn, A = Xn−1 and B =

⋃
α Φα(D

n
α). Then A ∩ B =

⋃
αΦα(S

n−1
α ). Applying the

Seifert-van Kampen Theorem to this CW decomposition, and using the fact that π1(B) = 1, we
get

π1(X
n) ∼= π1(X

n−1)/N,

with N the normal subgroup generated by loops coming from A ∩ B. Any such loop is in
Φα(S

n−1
α ), and therefore null-homotopic if n > 2, but not necessarily if n = 2.





Lecture 25

25.1 Generators and relations
In this lecture we introduce a way of describing groups using generators and relations, and how
to interpret these in the case of the fundamental group of a topological space. We begin by
illustrating an example: the torus. Recall that the torus, T2 = S1 × S1, has fundamental group
isomorphic to Z× Z. This was derived by noting that the fundamental group of a product is the
product of fundamental groups. We now discuss a different way of describing this fundamental
group, that gives more insight into the topology of the problem. The starting point is the
characterization of the torus as a rectangle with opposite sides identified by gluing them together.

a

a

b b ⇒
a b

In this characterization, the torus is defined as

T2 = I × I/ ∼,

with (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t). Let p = (1/2, 1/2) be the centre of I × I and consider
the open sets

Ã = {x ∈ I × I : ∥x− p∥ > 1/3}
B̃ = {x ∈ I × I : ∥x− p∥ < 2/3}.

Let q : I× I → T2 be the quotient map and A = q(Ã), B = q(B̃). Thus A∩B is an annulus and
T2 = A∪B. We would like to derive the fundamental group of T2 using the Seifert-van Kampen
theorem (recall that we already know this fundamental group, this is only to get a more insightful
description). For this, choose a basepoint x0 ∈ A ∩B. See Figure 25.29 for an illustration.

As usual, we denote by ιA, ιB the inclusions of A and B in T2, and by ιAB, ιBA the inclusions
of A ∩B in A and B, respectively.
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a

a

b b

ω

x0

Figure 25.29: An open cover of the torus.

π1(A, x0)

π1(A ∩B, x0) π1(A, x0) ∗ π1(B, x0) π1(T2, x0)

π1(B, x0)

(ιA)∗

(ιAB)∗

(ιBA)∗

(ιB)∗

The set A ∩B is an annulus, that retracts to a circle. The fundamental group is generated by
a loop ω at x0. Since B is a disk, it is contractible, π1(B, x0) = 1 and

π1(A, x0) ∗ π1(B, x0) = π1(A, x0).

Moreover,
(ιBA)∗([ω]) = [ιBA ◦ ω] = eπ1(B,x0),

so that the normal subgroup N of π1(A, x0) is generated by

ιAB([ω])∗ιBA([ω])
−1
∗ = (ιAB)∗([ω]).

This is where things become interesting: what is π1(A, x0), and how is (ιAB)∗([ω]) represented
in this group? Notice that A is homotopy equivalent to a torus with a missing point in the
middle (use the straight-line homotopy), and by a previous exercise this deformation retracts
onto the figure-eight S1 ∨ S1. Moreover, the fundamental group of this figure-eight is the free
group generated by the loops a and b, that is, it consists of words in the letters [a] and [b]. To
get an explicit representation with respect to the basepoint x0, choose a path h from x0 to the
intersection y0 of a and b and define the loops γa = h ∗ a ∗ h and γb = h ∗ b ∗ h. We then have
the basepoint-change isomorphism

βh : π1(A, x0) → π1(A, y0),



that maps [γa] to [a] and [γb] to [b], as shown in a previous lecture. Inside A, the loop ω can now
be factored as follows:

ω
∂≃ γa ∗ γb ∗ γ−1

a ∗ γ−1
b ,

which leads to a representation

(ιAB)∗([ω]) = [ιAB ◦ ω] = [γa] • [γb] • [γa]−1 • [γb]−1.

If, by abuse of notation, we denote a = [γa] and b = [γb], then we can say that the fundamental
group of T2 is presented as

π1(T2) = ⟨a⟩ ∗ ⟨b⟩/⟨⟨aba−1b−1⟩⟩.

The elements a, b are the generators and aba−1b−1 is a relation. Setting aba−1b−1 = 1 amounts
to requiring ab = ba, so that imposing this relation makes the group abelian. The resulting group
is isomorphic to Z× Z.

The torus is just a special case of a whole class of surfaces. Consider the surface Sg with g
“handles”. For example, the double torus:

This surface can be represented by identifying sides on an octagon:

b

c

d

c

d

a

b

a

Identifying the edges as indicated shows that the boundary is homotopic to a wedge of
four spheres, S1 ∨ S1 ∨ S1 ∨ S1, and in particular that all the corner points are identified with
the same point. More generally, given a polygon with 4g edges, identifying the edges gives
a boundary that is a wedge of 2g circles, and the resulting surface is called Mg, with g the
genus of the surface. Using exactly the same proof as with the torus, we arrive at a fundamental



group that is given by generators ai, bi for 1 ≤ i ≤ g, and relations by the products of the
elements [ai, bi] := aibia

−1
i b−1

i , the commutators. A group with this structure is said to have the
presentation

⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]⟩.
In general, a group G has a presentation

⟨S | R⟩,

where S is a set of generators and R is a set of relators, is G is the free group generated by the
elements of S modulo the normal subgroup generated by R,

G = ⟨S⟩/⟨⟨R⟩⟩.

Example 25.1. The group Z2 := Z/2Z has the presentation ⟨a | a2⟩.

A group is called finitely generated if it has a finite set S of generators, and finitely
presented, if both S and R are finite sets.

Example 25.2. Just as there are different ways of describing a topological space as a CW
complex, there are different ways to “present” the fundamental group. We discuss this using an
illustrative example, the Klein bottle K.

The image shows an attempted embedding of the Klein bottle into R3; this is not possible
without self-intersections. As a CW complex, the Klein bottle is usually described like a Möbius
strip, but with the top and bottom sides identified as well.

a

a

b b

The underlying 1-skeleton X1 consists of two loops, a and b, while there is only one vertex
(by following the identification of the boundaries of the rectangle as indicated by the arrows, one



sees that all the corners are collapsed to a single point). Therefore, the generators are the classes
corresponding to the cycles a and b (which we will also denote by a and b). The single relation
is the loop that forms the boundary of the rectangle and is given by baba−1 (formally, the class
in the fundamental group of X1 that is generated by the loop b ∗ a ∗ b ∗ a). We therefore get a
presentation

⟨a, b | baba−1⟩.
In other words, all the elements in this group are words in a and b (or equivalently, binary
sequences), where every occurrence of baba−1 is replaced with the empty word.

One might, of course, ask whether this group looks like a more familiar group, or whether it
can be described in a simpler way. One way to arrive at such a simpler representation is to use a
different CW-complex representation.

a

a

b bc ⇒

a a

b

cc

In this case, we can add an additional cycle c and then remove the cycle b. The resulting
picture can then be visualized as follows.

c

a

c a

The resulting group presentation is then

⟨a, c | a2c2⟩.

This is easier to interpret. Of course, simply setting c := b−1a−1 = a−1b we see that we can
represent every word in a and b as a word in a and c, and that c2 = a−2, so we can just get the
alternative presentation on a purely group-theoretic level. Each such presentation corresponds to
a different way of describing a topological space.





Lecture 26

Consider a graph X = X1 consisting of a set of vertices V = X0 and edges (D1
α, φα), where

φα : S
0
α → X0 is the attaching map that assigns to each interval D1

α its endpoints in the graph.
Recall the characteristic map Φα : D

1
α → X1 that maps each 1-cell to its image in the graph.

We use the term edge for both a pair (D1
α, φα), which records combinatorial information (e.g.,

which are the endpoints), and for the image Φα(D
1
α) as a topological subspace of the graph.

In the following we use the convention that an edge-path in a graph is a path that can be
written as a concatenation of edges:

γ = e1 ∗ · · · ∗ em,

where each ei is an edge (in the subspace-sense). Similarly, and edge loop is an edge-path that
ends where it starts.

26.1 From CW complexes to groups and back
Given a CW complex X and x0 ∈ X , we can compute a presentation of the fundamental group
π1(X, x0). As the path-components that do not contain x0 do not enter the fundamental group, we
may replace X with the path component containing x0. In addition, we can move the basepoint
to lie in X1 (or even X0), as this does not change the structure of the fundamental group. Finally,
we can restrict to the 2-skeleton, and hence assume without lack of generality that X = X2 is a
path-connected, two-dimensional CW complex. To compute the fundamental group we proceed
as follows:

1. Find a spanning tree of T ⊂ X1. This can be done, for example, using Dijkstra’s algorithm.
Let A be the set (not union!) of edges that are not in the tree. Pasting such an edge to
the graph T gives a subgraph that is homotopic to a circle S1, i.e., an edge-cycle. As
shown in the exercises, we can describe the fundamental group of X1 as generated by
these edge-cycles.

π1(X
1, x0) ∼= ∗e∈AZ.

Every edge not in T gives a loop when adding it to T , and conversely every loop in X1

based at x0 is homotopic to a combination of such edge-cycles (loops that consist of
traversing a cycle that arises by adding a ∈ A along edges).
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2. Let e2α ⊂ X2 (here we identify the open 2-cells with their images in X2) be a 2-cell and

φα : S
1
α → X1

the attaching map. Recall that γα(t) = φα(exp(2πit)) is a loop, and hence homotopic to
an edge-loop (a loop consisting of edges). Let x1 ∈ φα(S

1
α) and let gα : I → X1 be a path

with gα(0) = x0 and gα(1) = x1. Then

ωα = [gα ∗ γα ∗ gα] ∈ π1(X
1, x0)

and therefore corresponds to a reduced word uα in A. Set U = {uα}α.

We claim that
π1(X, x0) ∼= π1(X

1, x0)/⟨⟨U⟩⟩,

or in other words, that the fundamental group of X with base x0 is presented as ⟨A|U⟩. In fact,

• The union of the cells e2α together with the paths joining them to x0 form a contractible
subcomplex: π1(A, x0) ∼= 1.

• Choose points yα ∈ e2α inside each of the cells e2α and define the subset B = X2−⋃α{yα}.
Then B retracts to X1 (we poke a “hole” into each of the 2-cells attached to X1), and
π1(B, x0) ∼= π1(X

1, x0).

• We have X2 = A∪B and A∩B consists of precisely those edge-cycles starting at x0 that
make up loops homotopic to the boundaries of 2-cells, or in other words, the images of S1

α

under the attaching maps. Therefore, each element of π1(A ∩B, x0) represents a word in
U .

• The fundamental group of X is therefore given as

π1(X, x0) ∼= π1(X
2, x0) ∼= π1(A, x0) ∗ π1(B, x0)/⟨⟨U⟩⟩ ∼= π1(X

1, x0)/⟨⟨U⟩⟩.

x0

Figure 26.30: The graph X2



x0

A

x0

≃

B

x0

x0

A ∩B

Figure 26.31: The subcomplexes A, B and A ∩B

The construction is best visualized as in Figures 26.30 and 26.31. In summary:

• Every cycle in the underlying graph X1 corresponds to a loop based at x0 that moves along
edges from x0 to the cycle, around the cycle, and back to x0. Every such cycle corresponds
to a generator of the fundamental group π1(X

2, x0);

• Every loop in X2 can be represented as a combination of such cycles-paths along edges.
This corresponds to a reduced word in the generators of π1(X

2, x0);

• A loop is null-homotopic if it is homotopic to the boundary of a 2-cell in X2. Such loops
corresponds to a relation on the set of words in π1(X

2, x0).

The Seifert-van Kampen Theorem merely provides a means to formalizing the above intuitive
procedure.

Example 26.1. Recall the characterization of real projective space as CW complex. Recall the
cell decomposition of RP2 into one 0-cell, one 1-cell and one 2-cell, which can be visualized as
follows.



p p

γ

γ

Figure 26.32: Cell decomposition of RP2.

Even though we see two points and two arcs labelled with γ, the points are identified to make
one point, and the lines are identified (glued together) along the direction of the arrow. The
1-skeleton X1 of this is just a loop consisting of a single edge, and a spanning tree consists of
the only vertex in this graph. The generator of the fundamental group is thus this one cycle,

p γ

whose class we denote by a (say). For the relation, we look at the loop that bounds the 2-cell:
as seen in the image, this loop consists of going around the cycle twice, so it is represented by
a2. Therefore, the fundamental group is presented by ⟨a | a2⟩, and the corresponding group is
isomorphic to Z/2Z.

By now we should have an idea of how to get a group out of a CW complex. Conversely, any
group presentation leads to a topological space (in fact, a surface) whose fundamental group is
isomorphic to the given group.

Theorem 26.2. For every group G there exists a path-connected two-dimensional CW complex
XG such that

π1(XG) ∼= G.

Proof. Consider a presentation of the group (generators and relators). Construct the one skeleton
X1 of XG as a wedge (one point union) of circles S1, with one circle per generator. Every relator
describes a loop in X1: for example if ab−1c2 is a relator, then the loop is given by going around
a once, around b once in the opposite direction, and then twice around c. For each such relator
take a 2-cell D2

α with boundary S1
α and define an attaching map

φα : S
1
α → X1

that maps the circle onto the loop specified by the relators. The resulting CW-complex X = X2

is then a two-dimensional CW complex whose fundamental group is, by construction, isomorphic
to G.



Example 26.3. Consider the group G = ⟨a | an⟩ for some integer n. This is isomorphic to the
additive group Z/nZ of integers modulo n. To construct a corresponding topological spaces,
we begin with one copy of a circle, X1 = S1, and set a = [ω], where ω : I → S1 is the map
ω(t) = exp(2πit). We then attach a 2-cell D2 via the map φ : S1 → X1 in such a way that the
loop γ(t) = φ(exp(2πit)) satisfies [γ] = an. This is achieved by setting

φ(z) = zn,

which is precisely the usual n-fold covering map S1 → S1. The case n = 2 gives rise to RP2,
but for n > 2 we cannot embed the resulting space in R3.





Lecture 27

27.1 Orientable and non-orientable surfaces
In what follows, we recall that an n-dimensional (topological) manifold M is a topological
Hausdorff space that is second countable (that is, with a countable base), and such that each
point has a neighbourhood homeomorphic to some Rn. A surface is a 2-dimensional manifold.

27.2 Classification of surfaces

111





Lecture 28

28.1 The Universal Covering
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