2025-02-18 SAUL SCHLEIMER MAYHY LECTURE 19 (T) OUTCENTRES WE CAN SHARPEN THE BOUND ON TORSLON IN HYP. GROUPS. HERE IS THE NECESSARY TOOL. DEF: SUTPOSE (X,dx) IS A METRIC SPACE. SUPPOSE ACX FINITE. THE OUTRADIUS of A IS INF (FER WITH ACB (1,R) WE CALL KEX AN OUT CENTRE FOR & IF KEX REALISES THE ONTRADIUS, LET CEN (A) BE THE SET of OUTCENTRES. DEF: SUPPOSE (K,dx) IS A METRIC SPACE. WE SAY X IS PROPER IF ALL METRIC BAUS By (1,R) ARE COMPACT. ENAMPLE: LOCAL FINITE GRAPHS. NON-EXAMPLE. LOCALLY INFINITE GRAPHS. J. EXERCISE : IF (X.dx) IS TROPER THEN IT IS COMPLETE. (THAT IS, CANCY SEDS CONVERGE). EXEALTSE: SUPPOSE (X, dr.) IS PROPER SUPPOSE (IS FINITE AND NONEMPTY. THEN CEN (1) IS NONEMPTY. EXERCISE PROVE THAT CEN (D) CAN HAVE LARGE DIAM IN Z2. (UNLIKE E!) LEMMA: SUPPOSE (X, dx) IS J.HYPERBOLIC AND PROPER. SUPPOSE DCX IS FINITE, NONEMPTY. THEN $DIAM(CEN(\Delta)) \leq 45.$

PROOF: SUPPOSE C, C' CEN (L). LET & BE A GEODESIC LET be & BE THE MIDROINT. PICK $d \in \Delta$ TO MAYIMISE d_x (b,d). So d_x (c,d), d_x (c,d) $\in R \leq d_x$ (b,d).

PICK GEODERIUS β AND β' FROM d TO c AND c'. AS THE OTHER CASE IS SIMILAR SUPPOSE $u \in \beta$ HAS $d_x(b,u) \leq \delta$. SUPPOSE $d_x(d,u) = A$, $d_x(u,c) = B$. SO $A + B \leq d_x(c,d)$ $\leq R$ $\leq d_x(b,d)$ $\leq A + \delta$ CHAR.

SO, AGAIN, B≤S AND SO dx(c,c') ≤ HJ.

(2) MUCH BETTER BOUNDS ON TORSTON :

THEOREM [BRADY 2000 [AND OTHERS]] SUPPOSE (9,5) IS $\partial \cdot HYPERBOLIC.$ SUPPOSE F<G IS FINITE. THEN THERE IS SOME HEG SO THAT h'FN = B(40+1).

<u>PROOF</u>: PICK held whitch is as close as tossifile to CEN(F). SO IN LIES WITHIN DIST = 1/2 of some centre CEN(F). THUS $d_s(h'c, 1_q) \leq 1/2$.

PROOF, h'e IS CLOSE TO 1, APPLY LEMMA

THIS TROVES THE THEOREM.
THE BEGINNING of QUARI-GEODESICS
PROPOSITION (VER 2): SUPPOSE X IS A S. HYPERBOLIC METRIC SPACE
FIX 1748 (AND EVEN, SAT). SUPPOSE A:[0,n] - X IS A & LOCAL
GEODESIC WITH 2(0) A VERTEX.
THEN: $\frac{\pi}{k/2} \leq d_x (x(0), x(n)) \leq \pi$ NOT DONE.
PROOF SINCE & > O WE DEDUCE & JS AN EDGE PATH. THIS
GINES THE UPPER BOUND. TO TROVE THE LOWER BOUND:
SET E = n MOD \$1/2 PICTURE X Xm.
$\chi_m = \varepsilon + m \cdot k_2$ $\chi_m = \kappa_m \cdot \kappa_m$
$\Gamma_{m} = d_{\chi} \left(\mathcal{A}(0), \mathcal{A}(\chi_{m}) \right) \qquad \qquad$
80 IT SUFFICES TO TROVE Int > In +1. NOTE THAT
FILE IN SO IT SUFFICES TO PROVE (FILE) IS STREETLY
INCREASING.
EXERCISE $0 < r_0 < r_1$.
SUTPOSE (FOR CONTRADICTION) THAT IN IS NOT STRICTLY
INCREASING. FIX MINIMAL M SO THAT I'MAN SIM NOTE
$r_{m-1} < r_m$. Ficture $k/2$
×m k/z
$\alpha(0)$ A $p \in \mathcal{F}_{m+1}$
LET pm BE A GEODESIC FROM alog TO xm. SO d [[xm. , xm.],
BATT , BATT FORM A GEODESSE TRIANGLE SO X IS WITHIN & of
SOME POINT P of Bout. (SAT) WE FIND K/2 < 23, GINING
A CONTRADICTION.