2025-02-25 LECTURE 22 SAVE SCHLETMER MAHHY (1) CONJUGACY PROBLEM LAST TIME PROVED: LEMMA SUPPOSE (G,S) J. HYP SUPPOSE U, JEF(S) ARE CONJ. IN G SUPPOSE ALL ROTATIONS of K, J ARE GEODESTC WORDS JN TIGS). THEN EATHER (1) $|u|_{s}$ $|v|_{s} \leq 85$ (ii) THERE ARE ROTATIONS u's' of u, J AND WEFIS) OR SO THAT WISE 25 AND U.W=W.J'. COROLLARY: THERE IS A CONSTANT K=K(151,8) AS FOLLOWS: SUPPOSE (4,5) IS J-HYP. SUPPOSE U, JEG CONJUGATE THEN THERE IS WEG SO THAT (i) N.W=W.J AND (ii) IWIS = INISTIVISTK EXERCISE : PROVE THIS . EXERCISE, SOLVE THE CONJUGACY PROBLEM FOR (9.5) S. HIPERBOLIC [AGAIN : THE PROOF IS NON-CONSTRUCTIVE.] 2 QUASI-CONVEXITY. DEF. SUPPOSE (X,dx) IS A GEODESIC METRIC SPACE. SUPPOSE YCX IS A SUBSET. WE SAY Y IS K-QUAST-CONVEX IF, FOR ALL y, y & Y, FOR ALL GEODESICS [y, y'] WE HAVE $[y,y'] \in N_{\chi}(Y,K).$ DEF: SUPPOSE (G,S) FIN GEN. SUPPOSE H < G SUBGROUP. SAY H < G IS QUASI-CONVEX IF THERE IS Some K SO THAT HCF(QS) IS K-QUASI-CONNEX.

EXAMPLE: TAKE
$$\Gamma = \Gamma(\mathbb{Z}_{1}^{2}(TD))$$
. THEN THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
TS QUART-CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
IS NOT QUAST-CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
IS NOT QUAST-CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
IS NOT QUAST-CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
IS NOT QUAST-CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
DEF: CALL YCX CONVEX $(k=1)$ WHILE THE SUBGROUP $\{(n, 0) \mid n \in \mathbb{Z}\}$
TO PROVE HC F(GS) IS K-QUAST CONVEX. SET
TO PROVE HC $(h_{1}, h_{2}) = h_{1}$ TO $(h_{2}, h_{1}) = h_{2}$ $h_{1} = h_{2}$ $h_{2} = h_{2}$
TO PROVE HC $(I_{1}, h_{2}) \leq C \cdot d_{1}(I_{1}, h_{2}) = h_{2}$ $h_{2} = h_{2}$ $h_{2} = h_{2}$
SO THAT $d_{1}(I_{1}, h_{1}) \leq C \cdot d_{1}(I_{1}, h_{2})$ $(h_{2}^{-1}, h_{2}) = h_{2}$ $h_{2} = h_{2}$ $h_{3} = h_{3}$ h_{3} h_{3} h_{4} h_{7}
TO PROVE HC $(I_{2}, h_{1}) \leq C \cdot d_{2}(I_{1}, h_{2}) [NO'' BORTCUTS' SURKS]$

BUT C=1 WORKS (BECAUSE T IS VERY LARGE!)

EXAMPLE: $\{(n, 0)\} < \mathbb{Z}^2$ GINVEX \Rightarrow QUASICONVEX \Rightarrow UNDISTORTED. $\{(n, n)\} < \mathbb{Z}^2$ NOT QUASICONVEX, BUT STILL UNDISTORTED. $\langle b \rangle < \langle a, b | c b ca^{-1} = b^2 \rangle$ DISTORTED (SO NOT QC.).

Π

CHALLENGE : S	SUPPOSE (C	4.5) 5-	HYPERBOLI	C. SUPPOSE	H <g.< th=""><th>· · · · · · · · · · ·</th></g.<>	· · · · · · · · · · ·
			ABT-CONVE			
				DISTORTED		
		I FIN 4E	N AND VN	UTSIOK I ED		
		• • • •				
		• • • •	• • • • •			
		• • • •	• • • •			
		• • • •				
			• • • •			
		• • • •				
		• • • •				
			• • • • •			
		• • • •				
		• • • •				
			• • • • •			
		• • • •				