2025-02-27 LECTURE 24 SAUL SCILLETIMER MAAHU (1) SHARP TELANVILES LEMMA: SUPPOSE (X,dx) IS S-UNTERBOZIC. SUPPOSE X, y, Z (X) WITH $d_x(y,z) \leq \varepsilon$. SUPPOSE $0 \leq R \leq d_x(x,y)$, $d_x(x,z)$ LET $p \in [x,y]$, $g \in [x,z]$ with $d_x(x,p) = d_x(x,g) = R$. THEN $d_x(p,q) \leq 2S + \varepsilon$ PICTURE X P

DINERGENCE

TROPOSITION: SUPPOSE $(\lambda \cdot d_{\lambda})$ IS δ -HYP, WITH $\delta z 1$ SUPPOSE $(\lambda \cdot d_{\lambda})$ IS A GEODESIC, SUPPOSE $(\alpha', \beta') = \beta'$ IS A SEQ of POINTS WITH $d_0 = 7$, $d_N = y$, $d_X(\alpha', \alpha_{T+1}) \leq \varepsilon$. FIX $z \in [x, y]$. SUPPOSE $d_x(z, u_1) \gg R$ FOR ALL \dot{c} . THEN $EXP(\frac{R}{5} - 3 - \frac{1}{5}) \leq N$ **TROOF:** WE FIX GEODESICS $\mathcal{D}_1 = [z, x,]$, WITH $\delta_0 = [z, x]$ $Y_N = [z, y]$ DEFINE $\pi : \epsilon \mathcal{D}_1$ BY $d_x(z, \pi_1) = R$. **PICTURE:** $x = d_0$ $x = d_0$ x =

THUS, $d_{x}(x_{i}, x_{i+1}) \leq 2J + \varepsilon$ [LEMMA]. WE DEFINE GEOPESTC TRIANKLES AS FOLLOWS: CONVECT x_{0}, x_{N} BY GEODESTC. IF x_{i}, x_{i} CONVECTED, AND IF $|j-i| \geq 2$ THEN x_{0} SET $k = \lfloor \frac{i+\delta}{2} \rfloor$ AND CONNECT X: TO χ_{k} AND χ_{k} TO χ_{j} SO THERE IS A SEQ of $\lceil log(N) \rceil$ + 1 GEOD ARCC of HENGTH $\leq \delta$ FROM Z TO SOME $\lceil \chi_{i+1} \rceil$, SO $R \in d_{X}(Z, X_{i}) \in S \log_{2} N + S + 2S + E$ < 5 log 2 N + 38 + € So $EXP(\overline{s}^{-3}, \frac{c}{5}) \leq N$ CORULLARY: SUMPLE (95) IS S-HYPERBOLIC AND NOT VIRTUALLY CYCLIC. THEN G HAS EXP. GROWTH PROOF: IF e(g) = 1 THEN USE PROPOSITION. IF e(g) = 00 THEN [EXERCISE] (3) QUAST-GEODESTICS DEF. A QUART-GEORESTIC IS A QUART-ISOMETRIC EMBEDDING OF AN INTERVAL, RAY, OR LINE (of IR OR of Z). THEOREM (STABILITY] FOR ANY S, N.C. THERE IS D=D(S, N, C) AS FOLLOWS SUPPOSE & IS J.HYP. SUPPOSE d: [a,b] -> X IS A (r,c)-QUASI-GEODESIC. SUPPOSE B = [dian, d [b]] IS A GEODESIC THEN: OCHX(B,D) AND BCHX(d,D). (HERE WE USE & AS SHORTHAND FOR d((a,b))] PICTURE X(H) d La ÉD , $\alpha(a)$ $\beta(5)$ β $\alpha(b)$

PROOF: SUPPOSE QEB MAXIMISES $\{d_x(q, \alpha) \mid q \in \beta\}$. SET D= $d_x(q, \alpha)$. THUS $\beta \in N_x(\alpha, D)$. PICK pires SO THAT: $d_x(p,q) = d_x(q,r) = 2D$ AND $p \leq q \leq r$ AND $p \leq q \leq r$

So $d_{X}(p', r') \leq 6D$. FIX q', b' SO d(q') = p', d(b') = r'. SO $|b'-q'| \leq \lambda 6D + C$ CONCATENATE TO GET $d' = [P, P'] \neq d|[q', b'] \neq [r', r]$ TAKE THE CORNERS P, P', c', c AND INTEGER TOINTS TO GET SEQUENCE $\{d'_{i}\}_{i=0}^{N}$ WITH $N \leq \lambda 6D + C + 2D + 4$, WITH $d'_{0} = P, d'_{N} = q$, AND WITH $d_{X}(d'_{i}, d'_{i+}) \leq MAX \{1, \lambda + C\}$ SET $E = MAX\{1, \lambda + C\}$. BY TROPOSETTEON

 $EXP\left(\frac{D}{5}-3-\frac{c}{5}\right) \leq (\lambda 6+2)D + (+4).$

LHS GROWS EXP'LY, RHS LINEARLY. SO D BOUNDED IN TERMS of A,G.S. EXERCISE FIND D'SO & C Nx (p, D').