2025-03-05 SAVE SCHLEIMER MAMMY LECTURE 26 SUPPO CLIM (1) THE FUNDAMENTAL OBSERVATION of CEDMETRIC GROUP THY DEF: SUPPOSE X IS A METRIC SPACE SUPPOSE G ACTS GN X BY ISOMETRIES. THE ACTION IS COLOMPACT IF THE QUOTIENT SPACE GVX IS COMMENCE. THE ACTION IS PROPERLY DISCONTINUUS IF FOR ALL KCX COMPACT WE HAVE E geG | KA gK # \$ 35 FINITE. THE ACTION IS GEOMETRIC IF X IS PROPER, GEODESIC AND GACTS COCOMPACTLY AND PROPERLY DISCONTINUOUSY. EX: ZI ACTING ON R IS GEOMETRIC R ACTING ON R IS COCOMPACT BUT NOT PROP. DECONTIN

G ACTING ON P(G,S) IS GEOMETRIC IFF S IS FINITE. <u>DEF</u>: SUPPOSE G:X2 IS A GEOMETRIC ACTION DEFINE $X'=G\backslash X$ AND

dx ([], [y]) = INF { dx (gx, hy) g, heg}

LEMMA (1) THE INF IS REALTSED.

(2) (X', dx') IS A GEODESIC METRIC SPACE. THE METRIC TOPOLOGY EQUALS THE QUOTIENT TOPOLOGY. PROOF: EXERCISES.

LENMA EMILNOR . ÉVARCI SUPPOSE G: X D IS A GEOMETRIC ALTION. THEN

() G IS FIN GEN AND

(2) FOR ANY FIN GENSET S c G, FOR ANY XOEX, THE MIP g -> g.x. JS A QUASI-ISOMETRY FROM (G,dg) TO (X,dx)

TROOF: SET X = GIX LET [x] = X' BE THE CLASS of x. SINCE X' COMPACT IT HAS BOUNDED DIAMETER, SAY K. FIX Xo EX. CLAIM: G.X. IS K. DENSE IN X PROOF: FIX ANY YEX SO dx ([IKo], [Y]) < K SO THERE ARE g, he G WITH dx (g.70, h.y) < K. So $d_{x}((h, y), x_{0}, y) \in K$ SUTPOSE HE & FIX GEODESIE & = [20, 4.70]. LET (d;) BE THE END - AND INTEGER - FOINTS of d. $x_0 = \frac{h_1 x_0}{h_1 x_0}$ $h_1 x_0$ $h_1 x_0$ SO HAVE (h;) c G WITH ho= 1 G, hN = H AND $d_{x}(d_{1},h_{1}\chi_{0}) \leq K$. So $d_{x}(h_{1}\chi_{0},h_{1}h_{1}\chi_{0}) \leq 2K+1$. SO FOR ALL i HAVE dx (xo, (hi'hi) xo) = 2k+1. B=B, (r, ZK+1) IS A CLOSED BALL SO COMPACT. SO 5= 2geg | BngB+\$ JIS FINITE. THIS IS THE DESTRED FIN GEN BET FOR G. (.). BY LEMMA [2015-01-22] ALL WORD METRICS ON G ARE COMPARABLE. SO SUFFICES TO PROVE (G,ds) -> (X,dx) IS A QUART . ISOMETRY. SUPPOSE g EF(S) IS A GEOD WORD FOR (4,5). g=gig=gs-gn FOR gies, n=lgls SUPPOSE - gxo g.x. Jidegsxo

80

JigzXo g1 - gn-1 Y 0

IS A FATH IN X. SO dx (No, g. No) < (2K+1) lg ls.
EXERCISE: $ g _{s} \leq d_{x}(x_{o}, g, x_{o}) + 1$
[HINT: CONSIDER d = [xo, g xo]]
2 COROLLARTES/EXERCISES
1) WITH F. THE FREE GROUP of RANK M: F. IS QI TO F. FOR ALL MIN 72. [OR COULD USE FINITE INDEX SUBGPS]
2) SUTPOSE y > 2. THEN J, (G,) QI TO H ² .
WORE GENERALLY, IF M IS A CLOSED, CONN, RIEMANNIAN
n-MANIFOLD, THEN J. (M) IS QI TO M [UNIY. COVER]
3) SUPPOSE H < & FIN INDEX. SUPPOSE S.T. ARE FIN. GEN
SETS FOR G,H. THEN $i_{H}: (H, d_{T}) \rightarrow (G, d_{S})$ IS QI. (Allow GeH.
4) SUPPOSE HEG IS FINGEN BY T'S RESPECTIVELY. THEN
i: (H,d,) -> (4,ds) IS QI-END IFF H IS UNDISTORTED.
s) $\pi_1(S_y)$ IS QI TO F_n IFF $g=n=0$.
3 CYLLIC SUBGROUPS ARE UNDISTORTED
THEOREM : SUPPOSE (GS) IS 5-HYP. SUPPOSE gEG IS NOT
TORSTON. THEN Z -> G IS A QI EMBEDDING.
$n \longrightarrow g^n [< g7] JS UNDIGTORTED].$
FROOF RECALL (G (g) IS QUART-CONVEX, SO IS FIN
GEN, SAY BY TCC, 19).
EXERCISE $Z(C_q(y)) = \bigcap C_q(t)$ is the centre
τει
of $C_{q}(q)$, AND IS QUASI-CONVEX. SO $Z = Z(C_{q}(q))$
IS ABELJAN, IS FIN GEN, IS UNDESTORTED.
SO Z = TAR D Z* 80 Z* < Z IS FIN INDEX

•	S	0		Ż	Z ^k < Z < G JS UNDISTORTED							5.	. (8	5	1	k:	=/																			
	1																									•									ŕ		
	1	H 2	> .	2	. 3	Ĕ. 4	54	7			Z	•	٦.		•	•	•		•	•	•	•					•			•		•		.u	i,	•	•
																											•										
•	•	• •		•	•	•	•	•	•		•	•	•	•	•	•			•	•	•	•				•	•		•	•	•	•		•	•	•	•
•	•			•	•	•	•	•	•		•	•	•		•	•			•	•	•	•					•			•		•	•	•	•	•	•
•	•	• •		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•		•
																													•								
•		• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•
																													•								
•		• •																	•	•	•	•							•			•		•	•		
•	•	• •				•					•		•	•				•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																													•								
•		• •																										•	•		•	•					•
•	•	• •			•	•	•	•	•			•			•	•			•	•	•	•					•			•		•		•	•	•	•
																													•								
•	•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		• •								•	•		•	•			•		•		•					•						•			•		
																												•	•								
•	٠	• •			•	•	•		•		•	•	•	•		•			•	•	•	•				•	•		•	•	•	•	•	•	•	•	•
					•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•				•	•	•	•	•	•	•		•	•	•	•
-																												•	•					۰.			
	٠																																				
	•																																				