2025-03-11	LECTURE 28 MAHHH	SAUL SCHLEIMER	Γ
-			

SUPP 10 C1.14

NOT OPEN: SUNPOSE (G,S) IS of "FINITE TYPE." IF G
HAS NO BEIPG) SUBGROUPS THEN G IS 8-HYP
COPS! SEE ITALIANO, MARTELLI, MIGLIDRINI (2021)
"HYP S. MEDS. THAFT FIBER OVER S'" FOR COVINTEREX AMPLES!
1 AXES: SUPPOSE (GS) IS S-HYP SUPPOSE geg
A GEODESTIC ACTIGS) IS AN AXIS FOR G IF
g. A = A AND g ACTS ON A BY NON-TRIN TRANSLATION.
ENAMPLE: { of I NEZ } C F (a, b) GIVES AN AXIS FOR a
LEMMA: ALL AXES FOR geg 25 FELLOW TRAVEL
(IF THEY EXAST AT ALL J
EXAMPLE: JN ZX 422 THE ELEMENT (1,1) HAS NO AXIS
(1,1) ACTS VIA T > GLIDE REFLECTION.
2 RATIONAL TRANS. LENGTH [DELZANT]
FIX (G,S) A FIN. GEN GROMP.
DEF: AN EDGE FATH &: R -> IS IS A SHORT-LEX GEODESIC

IF FOR ALL MINEZ, THE LABEL of TILMINITS A SHORT-LEX WORD.

LEMINA (EXISTENCE) SUPPOSE (G,S) IS J.HYP. SUPPOSE &: I-> G IS A (I,C) QUASI GEODESIC. LET D=D(J,A,C) BE THE STABILITY WINSTANT. THEN THERE EXISTS A BIINFINITE SHORT-LEX GEODESIC CONTAINED IN THE D-NEIGHBOURHOOD of d, **PROOF**: LET β_n BE THE SHORT LEX GEORESIL FROM d(-n) TO d(n). SO $|\beta_n| > \frac{1}{7} (2n-c)$. NOTE EVERY β_n MEETS $B_s(1_4, D)$. ALSO, FOR $n > \lambda D+C$, THE ENDPOINTS of β_n ARE OUTSIDE of $B_s(1,D)$. 90, FICK AN INF SUBSEQ $B_1 \subset B_0$ SO THAT $\beta_i \cap B_s(1,D) = \beta_i \cap B_s(1,D)$ FOR ALL $\beta_i \beta_j \in B_1$. THAT B_i EXISTS FOLLOWS FROM THE INF TO FIN FIGENHOLE PRINCIPLE. <u>FICTORE</u> $u^{(5)}$

DEFINE $V_1 = \beta_n \cap B_g(l, D)$ FOR ANY $\beta_n \in B_1$. AT STAGE & WE HAVE B_4 , v_k with $B_k \in B_0$ INF, WITH $V_A = \beta_i \cap B_g(1, D+k)$ FOR ALL $\beta_i \in B_{4k}$, AND WITH $V_{k-1} \subset V_k$. BY INF-TO-FINITE FIGSONHULE PRINCIPLE WE CAN FORM B_{k1} , AND v_{k1} , SIMILARLY.

SET $V = V_L T_R$. THIS IS AN ASCENDING UNION of SHORTLEX GEODX, D-CLOSE TO d, SO IS ITSELF A (BIINFOUTTE!) SHORT-LEX GEOD. D-CLOSE TO d.

WE LEAVE THE TROOPS of THE FOLLOWING AS EXERCISES.

<u>PROPOSITION</u>: SUPPOSE (4,5) IS S. HYP. SUPPOSE geG IS NOT TORSTON. LET (λ, c) BE THE QUART GEOD CONST FOR $\langle q \rangle = 2 q^n | neZI \}$ THEN THERE ARE AT MOST $V_{2S} = CARD (B_c (1_{q_1} 2S))$ MANY EITINE SHORT-LEX GEOD. THAT LIE IN THE D-NETGHBOURHOOD of $\langle q \rangle$. ANY TWO SUCH MEET IFF THEY ARE EQUAL.

COROLLARY [PELZANT] SUPPOSE (G.S.) IS S-HYPERBOLIC. SUPPOSE geG IS NOT TORSION. THEN THERE IS $N \leq V_{2}J$ SO THAT g^N HAS A SHORTLEX AXIS. COROLLARY THUS $T(g^N) \in \mathbb{Z}L$ AND $T(g) \in \frac{1}{N}\mathbb{Z}$. RESTRATED: A FIX HYPERBOLIC GROUP HAS UNIFORMLY REFIDENAL ANERALE TRANSLATION LEWGTHS.
[CONNER 1997] GIVES FIN GEN GROUPS (OF FORM Z # Z) HAVING
SOME ELTS WITH IRRAT. AVE TRANS LENGTH.
CLOSEST POINTS PROJECTION
Suppose (X, d_x) is proper, δ -hyp. Suppose $x \in X$ is a Geodestic. We define $p_a: X \longrightarrow d$ by taking $p_a(x) \in d$ to minimize $d_x(x, p_a(x))$. Note that $p_a(x) \in d$ to minimize $d_x(x, p_a(x))$. Note that $p_a(x)$ not be well defined. So we instead take $p_a(x)$ to be a subset of d . $p_a(x)$ to be a subset of d . $p_a(x) \to d$ is a subset function $p_a(x) \to d$ is a subset function $p_a(x) \to d$ is a subset function $q_a \downarrow_a$ $q_b \downarrow_a$ $p_a(x)$ ERROR].