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1. Introduction

Groups are algebraic objects, consisting of

• a set G and

• an operation G⇥G ! G, written (a, b) 7! a · b

satisfying three axioms:

(1) There is an identity element e 2 G satisfying e · a = a · e = a for all a 2 G.

(2) Every element a 2 G has an inverse a�1
satisfing a · a�1

= a�1 · a = e.

(3) Elements satisfy the associative law, i.e. (a · b) · c = a · (b · c) for all a, b, c 2 G.

But this algebraic definition hides the fact that groups are closely tied to geometry. The basic

observation is that the symmetries of a geometric object form a group, with the operation of

composition.

The goal of geometric group theory is to understand a given group G. The method is to

• find a geometric object X on which G acts as symmetries, then

• study the geometry and topology of X to learn about algebraic properties of G.

This idea is as old as the definition of groups, but has become more and more developed and

powerful as time has passed. Here are some of the key figures in the history of geometric group

theory:

1.1. Evariste Galois (1832).
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Galois introduced the notion of a group while studying field extensions. The groups he studied are

now called Galois groups.

1.2. Felix Klein (1872).

Klein had the opposite goal from what we stated above: he wanted to understand geometric spaces

(Euclidean spaces, projective spaces, hyperbolic spaces, etc.) by using algebra to study their

symmetry groups. This is known as Klein’s Erlangen program. It helped to establish the deep

connections between geometry and group theory.

The symmetry groups Klein studied were continuous groups, in fact the groups are themselves

manifolds (i.e. they are Lie groups).

However, the main focus of geometric group theory is on discrete groups. This means they have

the discrete topology, i.e. every element is both open and closed.

Example 1.1. the real numbers R form a Lie group under addition. The subgroup Z of integers is
discrete. The group Z can be thought of as a discrete subset of the line or as a group of translations
of the line.

1.3. Henri Poincaré 1895.
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Poincaré defined the fundamental group of a topological space, showed the universal covering space

of a closed surface can be identified with the hyperbolic plane, and identified the fundamental group

of the surface with the deck transformations.

1.4. Max Dehn 1911.

Dehn studied groups by looking at generators and relations between the generators. He asked three

algorithmic questions that are still basic questions in geometric group theory. Namely,

(1) The Word Problem: Is there an algorithm to decide whether or not a product of generators

is the identity in the group?

(2) The Conjugacy Problem: Is there an algorithm to decide whether or not two words in the

generators are conjugate in the group?

(3) The Isomorphism Problem: Is there an algorithm to decide whether or not two groups given

by generators and relations are isomorphic?

In 1912 Dehn gave algorithms that solve these problems if you know your groups are fundamental

groups of surfaces. He did this by realizing the surface group as symmetries of the hyperbolic plane,

then using hyperbolic geometry.

1.5. Albert Švarc 1955, John Milnor 1968.
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These two independently studied what are now known as quasi-isometries between metric spaces;

these are maps that preserve the metric approximately, but not exactly. They proved the Švarc-

Milnor lemma, which is sometimes called the Fundamental Theorem of Geometric Group The-
ory.

A group can be made into a metric space, by choosing a generating set, then defining the distance

between a and b to be the minimal length of the element a�1b as a word in those generators. The

Švarc-Milnor lemma says that a metric space with a su�ciently nice group action is quasi-isometric

to the group itself.

1.6. John Stallings 1982.

Stallings introduced ingenious topological methods for the study of free groups and their automor-

phisms.

1.7. William P. Thurston 1970’s.

Thurston studied 3-manifolds by studying their fundamental groups and their action by deck trans-

formations on their universal covers. He conjectured a complete classification of 3-manifolds ac-

cording to the geometry of their universal covers. This classification was proved to be correct by

Perelman in 2000. It included a solution to a famous conjecture of Poincaré, which says that the

only closed oriented 3-manifold homotopy equivalent to the 3-sphere is the 3-sphere itself.
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1.8. Misha Gromov 1987.

Gromov is primarily a geometer, who promoted the idea that one should consider groups as metric

spaces, using the word-length metric described above. He injected a large number of geometric

ideas into the study of finitely-generated groups, for example he defined notions of negative and

non-positive curvature that make sense for groups. He proved in particular that negatively curved

groups (now called Gromov hyperbolic groups) have many strong algebraic properties. Although

geometric group theory has historical roots in all of the work mentioned above, its emergence as a

distinct field of mathematics can be attributed to Gromov’s work.

2. Course topics

• Free groups and ping-pong

• Brief review of fundamental groups and covering spaces

• Cayley graphs

• Group presentations and presentation complexes

• Quasi-isometries

• The Švarc-Milnor Lemma

• Brief review of the hyperbolic plane

• Surface groups

• SL(2,Z).

• Definition and examples of Gromov hyperbolic groups

• Properties of Gromov hyperbolic groups

• Definition and examples of CAT(0) groups

• Properties of CAT(0) groups
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Generators 2 SL n Z

free constructions

Let G be a
group

A subset S CG generates G if everygeG
can bewritten as aproduct of elements of S
and their inverses

G is finitelygenerated if some finite S CG
generates G

We focus on finitely generated in finite groups G

Simplest example 2 generatedby 13
Next 2 Can an die 2 ith coordinate

generated by i QQ 1 0730 1 in
2 is abelian gang for all g h
In algebra you probably classified finitely
generated abelian groups

GE 2m 21pm7pitz.FIderdements
minie IN the torsion subgroup



Important non abelian example

SL 2,2 add a b c d e 2 ad bo 1

Generatedby S H C

Freeness

27 is called the free abeliangroup of rank n
why free

eitte ei ei o group cites ester abelian but there
are no other relations betweengenerators

Example.FI imganp
212 73 is generatedby 9 11,0 and e 0,1

211,07 31011 0,0 is a non trivial relation
2e Be Edo 29 0 302 0

In 27 If Ʃ me 0 Then ni o for all i

Enlusion A f g abeliangroup is free abelian
if and only if it has no torsion

Exercise Why does freeabeliangroup have
no tasko



A formal andgeneralizable way to say freeabelian
let S er en

Any set map S G to

an abelian group G

Extends uniquely to a group hanamphism

2 G
Picture

E a a I x

s e
This is called a universal property in the

category of abelian graps
why does this say true ae no relations

Suppose ra n e t t neck 0 no to

Let fi S R

EI I jet
This extends to a jhymanghing hythe

universalproperty

f neat tneed nfledt trifled e ni

butanyhomomorphism
must seed O O so ni o



Now let's drop abelian anddefinefree groups
F is free if there is SCF such that

anysetmap S G to a group G

extendsuniquelyto a hanumphism F G

pike f
S G

We say F is free on 5 wile F F s

or S is a basis for F
Questions I If weconfadsuch as does it guerate F

2 ConF befreemadifferent at S

3 If so what istherelationbetween S and8

14 why doesthis say there are no relations

5 Is there a free grap

Observations consequences of te universal property
6 Suppose F is free on S F
The identity F F extends the inclusion
so is the unique homomorphism extending the
inclusion by theuniversal property

F id
u
s F



A S gamales F ie every altof f
is a product ofeltsof S U S

PE The set ofelts that are productsof Sus is a subgroup G
it contains inverses and is dosedmany

multiplication

f Eso

s IG F

F I F G h

If G E F the composition F F

extends S E F but is not surjective so
is not the identity contradicting point
above



2 3 suppose F is free on S and on S
both countable Then 151 18 1

Proof

Anyharunomorphism F 72 restricts to a

unique e'tmap 22

Conversely any set map
S 2 2 extends to

a unique homomorphism FCS

ie Hom F 2 maps S 0,13

Now count there are 2
s
set maps S 0,1

so Hom F 2 21ˢᵗ
Similarly 1Ham F 2

21ˢᵗ 2 s so 151 151

Definition 181 is the rank of FCS



theorem Two finitely generated free groups
are isomorphic if and only if theyhave the
same rank

Roof Let F F be finitely generated free
groups F F s

and f F F an isomorphism
S Fcs

Claim F is free on Stf s

pl we verify the universal property
Given fls 4G a set map we need

41 g
a uniquehomomorphism

g F G extending
existence

by g y gf f lyDefine g
s Is G

É r

f ly Y



This extends g if y fess then

gt f est e go f f s
g s

uniqueness follows
from the

uniqueness of f and gt

Suppose 151 151 Choose

a bijection b S g

It
extends i b

Ul i wi i

FCS FCS extends i b

i'Ul Ul i

81 s

The composition FCS É Ffs Ffs
Ul Ul Ul

S I S É g
extends ids so id fess by co



41 Why doesthe universal property
imply there are no relations
other than gg e

Let S A sz and suppose
W e is a non trivial relation
in F re

w ai ai ai es

dit Ai he 2 203

If Kel ie w s Ses

Defoe a set map S Z
s I

s o ifs't s

extend to a homomorphism F É 27

F

Y bythe universal propertyU
S I 27



Since is ahomomorphism f e O

ie F w 0

but f w FCA n 0

This doesn't work if w involves 2 or more

elements
of
S Here is an argument

that works in general
Provingtheexistence of Fr
Define f S 5212 2 by

ai B A B

where A d and B 39
and extend to a homomorphism

f F s SL 2,2

F is a homomorphism so I e f w

But if w B A B B A B BeA Be
Fj

ie Icw alternates between non trivial
powersof B and of A



Claim No such product is the
identity d in SL 2,22

Proof Atf it y yay
B Y 2k9 g Yay

Let G Gig 1 1 141 O exp ly x1

Ot

G
is

Gt

O n

Claim ATO E G BY G EO

II ly let Ixt2kyl lyla A CY E G

Ht lyl lyt2Kx I X B g GO



few ends in a powerof B say B

If i O B l sin e Orange

Since At Orange E Green
and Btn Green E Orange the

imageof i bouncesbetween Orange andGreen so

never returns to the diagonal in particular to

so BMAB A B 8

If i o Bit EOrange so a similar

argument shows BMAB A B 8



Ist here a free group

Let s be a set and 5 another copy
ie s s

a a
a bijection

let A S u 5 CA for alphabet

we have an involution A A
a I
E a

Iwill construct a group F containing S
then prove it is free

A word in A is a finitestring of
elements of A di 9k

A word is reduced it ait ai for
all i

The elements of F are the reduced

words in A plus the emptyword



The operation Fx F F
is juxtaposition followed by reduction
ie

if X X Xk Y y ye reducedwords

Let rex Y go
if y XI

max j Yi Tai tiej
otherwise

og Xi yr ye ret

Defoe
XY Xi Xk r Yrti Ye

this is reduced so is in F

Claim F with this product is a group

identity p

inverses X XIII I

associative law
X X XK XY Z

Y y Ye
Z z z I

X Yz



Check let r r x y

S rly z

Look at X Eet Eet Em

Suppose first rts l

ÉETEETEE
XY laullabo abr XY Z Labu to abe

YZ Libo Fc Tbc XCYZ a Tbc abc
abc is reduced so these are equal in fr

If rts l b 0 in theaboepictue

FEEIIIE.IEEmXY

Cau CuV av SXYlZ ar to AG

and YZ Tv Fc IC X YZ au Ic AC

ac may not be reduced
buta and care

so ace F is well defined



If rts l

H.EEEIEjE.zmariwwwtc

X Y Cara luv w aw

XY Z law WTC ate

y z Uva Wic UC

X YZ at c are

so associativity holds and we have a group
call it F s

Does FCS satisfy C
A Yes Let ait ait e f s

Given S G a set map
ai g i

define a homomorphism f FCS G

by flail aid g get
Since any homomorphism must

do this

f is uniquely defied



FrgÉfghif The free product
Git Ga is group with the following
universalproperty

F inclusions G G G and GÉG Gz

such that given a gap K
ad harphism.fi Gi K

F homomorphism f G Ga K st fief
fi of

Etf G GG Gr
4

III.fr
Exercise Prove uniqueness
The free product G It can be
constructedusing words like tetra group

The alphabet is A G eat real

Award Xi Xk is reduced if Xie G XueH
ad Xie H Xin EG



We setof reduced words including 0

Operation W X W W defied indef on ke
Ar Xk Y Ye

fi
kills Ye if y XieGatt

Xi Xk a Ya Ye if XKY E G alt
Y Xi

Xi Xeye Ye if XEGYett
or XceltY eG

ie juxtaposition followed by multiplication and cancellation

Identity of
three

Associative

ey G 6 27 Gift G Ls CE nee

W this th I SM no Mito

could start or end
with either an s or at

Ren GYGE F Sat

Free products with amalgamation
Given groups G G H and

homomorphisms hi H Gi

GIG is a the group satisfying the
following universal property



y y

F E G 7 G G and I G G Ga
such that For any group K and homomorphisms

gi G K

go G K
that agree on H lie g h Cy g help
for all ye H

F g G yGa K s t go g
and g iz ga

PII H T G

is

called the deproduct witten
To show existence

claim let N subgroupofG Ga
normally generated by words i h ly ably

Ren Gi Gym has the universal

property we want



ie H G

had
a K

Defoe g EEN gixig.cn game

x eG Xin eGe Xi L G a Xu EG

Have to show g
N er

N is normallygonby elevats hintholy5 yet
Weknow

y
ett g h y guholy

so g hiphajji gfhicyllgach.gs

gfhelying hecystleFor anyconjugateof y also

x yx go e e gex ex

so g is well defied on
Gi GIN

still have to show g is unique but that
is straightforward



 
Group actions

We want a connection betweengroups G and
spaces X

If X is atopological space the setof homeomorphisms
X X forms a group Home

o X with composition
as its operation

If X is a metric space the set of isometries
forms a group

Isom X

If X is a smoothmanifold the set of diffeomorphisms
forms a group Diff x

Other structures symplectic Kahler complex
give other groupsof symmetriespreservingthe
structure

Let Symn X denote oneofthesegroups

Def A left action of G on X is a

homomorphism G I Symm X ie

plgh p g opca firstapplyh theng

TE Foreach ge G there is a symmetry
X X written x g x

suchthat gh x g hx and Ex X



A right action of G on X is a map

p G Sym X such that

p gh p h op g and plea idy
ie p is an anti homomorphism

ie for every g e G there is a symmetry X X
written x ix g
satisfying x eg X and X gh x g h

first apply g
then h

Suppose p G Sym x is a left action

let x eX The stabilizerGy geG gx x

This is a subgroup

The action is free if Gy e for all x
ie everypointof X is moved by every
group

element

The action is faithful if p G sym x
is injective

ie g xx for all Xe X goes
the only groupelement that fixes every x ex
is the identity



Exercise If the action of G onX is not faithful
there is an induced action of Oker p
on X which is faithful

Notatim a left action of G on X will
often be denoted G Q X

An action G A X is proper if for every
compact set Kc X g lg kn k 03 is finite

If G A X and Xe X the orbit of x
is Gx gx ge G

An action Ga X is cocompact if there is a
compact KCX whose translates cover X

XY.ggK

If G R X define an equivalence relation on X

by X u x if X E GA

The orbit space or quotient space GX
is the set of equivalence classes
with the quotienttopology
U C GY is open p u is open in X

where p X DX
X no GX



Exercise If the action is co compact
then the quotient space is

compact

aside
Actions by is me tries on metric spaces
reference M Kapovich A note on properly discontinuous

actions arXiv 2301 05325

Saying GM is compact is a common wayto define cocompact action

If X is a metric space and G actsbyisometries
then this is equivalent to our definition

If X is ametricspace and G actsby isometries
proper is equivalent to

every x e X has a neighborhood Ux such that
E glg Ux n Ux 03 is finite

Our definition of proper Ga is finite for all xex



Example 27 AIR by translations
N s x meta
is free x the x n o ie 24 0 Fx
faithful n o xt n X

proper KC IR Kc a b for sue
a be27 Ktn n k 0 neb al

cocompact U cairn IR
UE 2

The quotient space 2M is

homeomorphic to St

Examples D 27 227 2 227 s t

infinite dihedralgroup
acts on IR by s x s x

t Xm tx
ts x I X L L X HX

not free but proper cocompact faithful

Example 8212,27 acting on IR

by A 91 4 Etty
faithful ACE Y H LY A L'd
not free stab 0,0 5122
not proper CA Bn NBN 710,0 VA
not cocompact exercise



SL 2,22 also has a very interesting action
on a different space X

X HI zed Inez o

aba z Etta

eg d 2 2 1 i.it
translation right e 4
by 1 I 0 1

Y z I Ez
E

U

re
O f e T o

z

inversion in the 0
o
0

circle 121 1
followedby

reflection in y axis
This action is not free 98 i ti i

and not faithful II z z

but Ker I 8 so PSL 2 541271 1
does act faithfully

and not cocompact K compact K B
for some r I claim there is no

Ae 5212,27 St A Bra 8 far n r

since translates ofBr don't cover It neither
do translates of K



of

proof Eba Y no

ax by n

c xt dy o d o or y Ex

y G x ax b Ex
Cad box dn
x dn

y
en

y2 n2 alter
b n Mr

d 0 bet b tea I 1

by n y In X O

It went v2

But it is proper
In particular Gy 222 unless x is

in the orbit of i or w HEE

and Gi I 27 42 Gw 2
622



 
Basic example of a free and proper action
T LX b acting on x ̅ by deck transformations

Referee Hatcher AlgebraicTopology Chapter 1
1

Following is a brief review of what you needto know This should all be familiar

If X is a topological space and b eX

If a s g where

a Loop is a continuous map 8 0,13 X with
810 8 1 b

88 if 8 can bedeformed

to 8 continuously

l I
Theration 81.82 means first do 8 then 82
both at doublespeed Check Tr fr 4.8
we will usually omit the notation
This is a group the identity is the constant
map t b for all t e E I



Example X contractible Ti X b 1
1

Example S p 2 87 8
p

If X is path connected there is an isomorphism

X b X b for any b b ex

defined as follows
Choose a path J C D X with 0101 6,011 b

Define Tx Fc X b Th X b by
Tx 8 5 8 0 triplespeed

choosing a different pathe
gives a different isomorphism

The composition X b X b X b

is adf.erautomaphi.me conjugation by the loop
F E

Yankampenstheorem If X AUB
with A B open and A B and AMB
path connected and p e AnB
then

Tti X p IT A p B p
ThAMBp



ay to 2 12 Fla b
a 47

and I Fla am an

Proof induction on n

e

ay X finite graph
u Fa
T maxed tree
ei ien edges in IT

AF loei Ai 2 A.pAj T T.ci

TAX E Z 27 Flemen
vankampen

Tikhandaryspace
Y is a covering space if

X X I open and Ux of x
st p Ux 1 Ux

it is called a space but it's more than the

space Y it includes the map p



R steg t exit

It has some basic connectedness properties
connected locally pathconnected
semi locallysimply connected which are

satisfied eg if X connected CW complex

Then there is a covering x ̅
such that Ieectedandtlxl 1

ci.ee x ̅ is is emptycected
called the universal cover

x ̅ is unique up to homeomorphism ie

If x ̅ X is another covering space
with x ̅ simply connected then there is

a homeomorphism x ̅ x ̅ with p oh p

x ̅ x ̅
ie p commutes



Unique path lifting

Anycoeving space YAX has uniquepath lifting
Given a path 6 917 X starting at box
and a point 5 p b there is a unique path
F 0,13 Y starting at 5 with p F T

This allows us todefine an action of x b on x ̅
Choose be p b andsuppose 8 0,1 X ET X b

Lift to 8 starting at 5
Then 8.5 80 Ep b

j
É

If y be x ̅ choose In
a path from y to 5
with image FC X and P
lift F 0.5 to a path f
in x ̅ startingat y

Then define 8 y 55
1 1 0.8.0 1 i

Kim This is well defined follows because

any two paths y to
5 are homotopic



Claim The action is free and proper

Ee gig
8 b D car karate

8 to 5 car haotge 8 tob b 78
r id

Exercise 8 yay o b even if y 5

Props If yet letUy nbdofy evenlycornedby p

iF y
Action free so

reid ay y

Ip rlly ndy 0
Oy y

Note this is a left action 8 Oz e Th X b
Pig frog

x
É



A different choice ofTs gives a differentaction

to
Éi i

x ̅
If the red points are the same then 85 0

80 05 in X but in general X is not
commutative

eg T
00 Efa

Finally The action is by homeomorphisms

g Ty is continuous and

g I x ̅ is a continuous inverse

The action of G on x ̅ hasquotient
GI X In particular 1 GY G



If G acts freely and properly on a nice

enough space Y there is a sort of
converse

Proposition Suppose Y is locally compact Hausdorff
simply connected and locally path connected
If G actsfreely and properly on Y then

I GY G

Proof pick ye Y and 8 a path fromy to gy
Let x ̅ bethe image of 8 in GY and define

f g 8 et Y G

y

THET 46,8

Any other path 8 from y to gy is homotopic
to 8 so 8 8 and f G y
is well defined

Cam f is an isomorphism

Proof First show Y is a

covering space



Since G acts freely onY gy ty
for

all g
e G ye Y

Since Y is locally compact each yeY has
a neighborhood by with compact closure thy
since the action is proper only finitely many
translates of Ty intersect thy so only
finitelymany translates ofUy Intersect Uy
Since Y is Hausdorff and the translates
ofy are distinct these can beseparated by
smaller neighborhoods guy a guy The
intersectionof these neigh hw hoods is an

open set Vy such that
guy n Vy 0 for all g

e G

Therefore the image ofVy in GY is

evenly covered by the translates ofVy

Since Y is locally path
connected

and simply connected Y is the
universal cover of GI and
G can be identified with the

group of
deck transformations

SO T GY I G



Galois Correspondence

Th X b acts freely iproperly on I

So HE X b also acts freely I propely
SO

I YIH and YIH Ya X
aefveriy spaces
and I XIA EH

picture Y
one Eat

are blue Y b ya
MG

blob foreach

geG1PoriH
T1g4Anedepeeoftu.sTFG

coalymap CG HI
ie it is EG it to 1



Conversely if Y X is
a covering space then the induced

map P T Y y T Y peas
is injective so identifies

CY y with a subgroup of Y pays

If ply ply for y y then

P TaCY y is conjugate to

P T Y y



theorem Galois correspondence

conjugacyclasses

ofsubgroupsg xp
path connected

coveringspaces YI

HE X IAI
PTYE X LY X

pix eeltsyGY Xlt points in pill costsofH in G

so PIG G H

Minx
Examples X R T X E Fa Fay

E
X wejust need to find a t connected carry

spaceof X

Lenny Y 4 X ay ever X is a graph

Votes VI p b
edges e ly lifts ofthe loops x and y



U Y v e Y C Y

p Y Of a local haemophism

T X 42 X is a tree
Just haveto fad a treeThat cools R2 ten
by andgenes we

know T Y

loper

i edges haemophiallyt.IT t ine
vertical to b

t This is a
carry up

Tis

I P connectedand IT 47 so

T is theuniverse everR2

action of Th Rab on T

pick of a pig



A
a shifts the whole

ftp fffft

picture to the right

f y
b shifts the whole
picture up

Using the Galois correspondence we can prove

Theorem Any subgroup of a free group FCS
is a free group

proof let Rs be a wedgeofcircles one for
each se S so Rs E F S

Theuniversal cover Rs is a simply connected

graph so is a treeTs The action of FIS
on Ts is free and cellular so the
action of any subgroup H FCS is

free and cellular themap T T H

is a coveringmap and It TIA
But TH is a graph so I TH is free


