
PingPong
We've seen how a free proper action of Gon a nice enough space Y can be used
to give information about G

But there are
many

actions on nice

spaces that are not free Can we still
get information about G

Here's one way

Given an action of G on a space
of anysort and two elements a b EG

there is a criterion called the Ping Pong
lemma which will prove that the subgroup
a b of G generated by a and b is free

This is often used to prove that G contains
a non abelian free group

It suffices to prove that reduced words in a and b
are never the identity in G since then the

homomorphism F a b a b extending a b a b

is both surjective and injective



Ping PongLemma Let GAX and a beG

Suppose X contains subsets A B A B such that
a B A

and b A c B
for all n e 21 03

Then the subgroup generated by a and b is

a free group

Proffi suppose w a b a b are ida
all nie Z 03 ie w is a reducedwordstarting

and ending with a power of a

Let x e B A Then w x A so wx x
so w Idg

If w startsor ends with b then for
large enough N a wa starts and ends
with a so a wa id so

wtidg.TK

Example 6 52132 a d b 29

We already usedtheaction of SL 2,2 on R
to see reduced words are not the identity

Let's use the action on H1 and the PP lemma

A z 12
b 2

1
B A

B artist so ink
A zertist s so 14 13



clearly a B A
Alsoneed b A CB ie z rtis 181 1 570

Im 0 and 1 Re 1141
Well 2 1 3 1 2 has imaginary

part 7 17 This is so since Im e so

The real part is P ftp.ff s

Needto check Relz 2112112 1122 1112

ie Yr 1 4645 s rt 2645 4 1 4625
ie 5r 1 6Cr 5 and 3r It 2 v75

since 181 1 its r so it suffices to shoo
Sr 6r and 3r 1 282

This is clear if rs 1

If rs 1 we just need to check that the roots
of 25 3 1 and 602 55 1 are all 1

If the action of G on a space X is free the
orbit of any point xeG can be thought of as a

copy of G

If theaction is proper but not free then point
stabilizers are finite and an orbit is almost
a copyof G



Quasi isometry

Suppose G is finitely generatedby S
Recall that word length makes G into a metric space
dggin Is gh length of shortest word

in Sus representing g h

Then dfgg O

ds gh dfh g ds is a metric

ds gh 0 if g h

ds g h ds h k Is g k

G acts on Gds by leftmultiplication which is an

isometry d g gg ls yggx Islix ds x y

If X is a metric space and G then we

can measure the distance in between points in
an orbit Gx
We know Gds Gx dy

g go
is a surjective map It is probably not an isometry

but if X is nice and Gax is proper and
cocompact we will show it is close to an isometry
specifically it is a quasi isometry



Def X Y metric spaces f X Y is a

quasi isometric embedding if there are constants

771 do such that

d x x C d fix text Ad x x C

f is quasi surjective if there is a constant K
st y EY Fx ex with d y fex K

A quasi isometric embedding that is quasisurjective
is a quasi isometry

Also called a A C quasi isometry Note

a A C qi is a X C qi for any
137 C's C

eg 2 generated by 5 3 3 withthewordmetric

ds t t 1m n

f Z R the natural embedding preservesdistance
t n ie is a quasi isomorphic embedding

with 7 1 0 0

f is also quasi surjective take K

Y i P

every ER is within of the image f.CZ



eg 2 S s t ds it s tᵈ k al lb dl

Cid

27 d R ds fit n abl
It lab caid m.fm

MintoK Ez 1 52 0 0 works

da 4 d Fns m n

2
Mtn squarebothsides

21m n7 mzzman

andsimplify

m m 2mn m n 0

Preposition Quasi isometry is an equivalence
relation on metric spaces

Proreflexive
use idx

Transitive re

Claim if f Y g Y Z are quasi isometries
then got X Z is a quasi isometry

Pᵈweneed to find X C t

dfx.nl C dz gfa gf x A dfxxD C



RH inequality

dfgtext gf x s Agdffa fix Cg

Ag If dfx xD Cf Cg

WIdf xx Aggetfy
Lit inequality

t dy x c e dz gf x gf x
dx xx E

dz gf x g f x Ig duffel f x Cg

Iffy x x Cf Cg

Idan's Ej
2 2

Now take A max aid
Ce max Ca Ca

Symmetric ie

claim f X Y a quasi isometry
Then I g Y X a quasi isometry



X

proof
t

Y

For each yeY choose x with
d fix g sky and define glyk x

we claim that g
is a quasi isometry

find Fifi
with dlgiys.ggs sadcy yDtG

we know

d x x Cf Ed fix fan

dex x 1 fix fix Cf
I

IffdlysyDt2kftCfJi.dlxixDE
dly.yD Xf2

X C

find Xz Cz with

Idly y c sac gigs gigs

Weknow d text f x I Adlx x Cg
so Id fax fax g I dlx x

and



Ifdlyy 2k 4 e feed I
i

p
dly y d gey glyn

so take A Af C maxMatt If 21ftCf
Ak 2kg Cf

Show g is quasi surjective withsomeconstant K

x

x e X Need to find ye Y with d gey x E K
The obvious thingto try is y fax
We defined gey bypicking some x with
d text y I ke

I
Then I d Ix x Cf S d fix f xD I kg

so dix x I

Ilkftedgig
dex glyl s k



Prop X Y metricspaces f X Y g Y X
such that

i d fix f x Ad x x C

2 d gly gly's Idly yD C

3 d x g f x K

4 d y fg g K

Then g f are quasi isometries

Picture
f

t É

Proof

Let's show f is a quasi isometry
the argument is symmetric for g

We have A C st dy 81 1 f x Id x x 6

Weneed X.cl at
dy fat fat dxlx.in G

Ef dx x x dy fix fix I'c



d Igf x g f x 2K
I d far far t

i iand f is quasi
surjective

g

If y Y then dlyfgly L K

Application

Prot S S finite gueraty sets for G

then f id Gds aids
is a quasi isometry

Pf If g Gds Gds is

also id then dly fgy d x gfx 0

so f and
g satisfy

and in

the proposition



For 01 need to find X C st far all g he G

dgilg.gsAdsGia te

ie da big
E Idsa gig

to

write each s e S as a word in 8
s Wg s

let me Max laying us sU E S

Suppose he A Dk is a shortest wad
ie da h k

Then SheWails wks is a wad in S

representing h of length I k m

so d f 1 h E K M
My
d ish

to
Condition is entirely symmetric

write s a S as a word in S to get

dsl g e m'dsiCi g r



We're ready for the fundamentaltheoremof GGT
First here is a vague statement

If X is a nice metric space
and G A X is a proper
cocompact action

Then G is quasi isometric to

To get a precise statement we need to say
what nice means

Let X be a metric space
A path from x to y in

X is a geodesic
if its length is equal to d x y
Geodesics are not necessarily unique
A metricspace is geodesic if any two points

are connectedby a geodesic

A metric space is proper if balls Br of
finite radius r are compact

nexamples R 0,013 is not geodesic
a graph with an infinite valent vertex is not

proper fE



Than Suarc MilnorLemma X d propergeodesic
metric space G RX a proper cocompact
action Then G is finitely generated
and Gds is quasi isometric to X d

for any finite generating set S

examples 2 R R is

Exercise nm math

Translates of 0,13 cover R so ds is g i to R

De RR Translates of 50,1 cover IR

E t so Dds is alsoq.i.to

RProofftherem choose any e X and define
f G X by f g g x

Claimt G is finitely generated

Claims For some hence any finite generating

set S f Gds X dx
is a quasi isometry



Choose K CX compact s.li X Ygkwith x e K
Then Kc U for some open ball U Br x

with compact closure D
Now X Yogll and
S geG gun U 0 geG gDnD 03

which is finite since the action is proper

claret S generates G

pref For ge G let 0 be a path from x to gx
Cover r by translates of U then take
a finite subcover U gill gall gll

Ungill g e S say g s

s Un gall U n sigall
Siga Szes 92 1,12



etc continue get g 1,02 Sk

Claims f Gds X dx is a

quasi isometry
We need to find 7 C K such that gig e G

dx g X g X Ads g g C
Since G acts by isometries this is the sore as

dx x x Ads 1,984C
dx x hx ds 1 h C

and yeX Fg s t dly gx K

is easybecause the balls gBr x coer X
ie if ye X then there is some g with

dly gx r

Let S be any finite generating set

Suppose h A S is a shortest word in S

representing h ie ds i h K

let m my d x
Ix Then we can

make a path from x to hx consisting

of k segments of length m



iii

d tix s six d x s x c m

etc

so dfxhx ends ish to

dyCxha Idsa h e

doll h E Ady x CAC

We have r s t g Brix car X
Let S g lg Bara n Barlx 03

This is still finite by propernessoftheaction and
contains our old 5 so still generates G

Now let t be a geodesic from x to hx



Divide T into k pieces each of length r except
the last has size r r Now d x hx length o Ck 1 r r

the gBlx corer X so for each Xi go
with d Xi gix

r

É

Than d gix gitix 3r so

d x gigit x 3r

ie BarlangigB fx so gigit e 5
and h 1g gigs gigs gin

S Iz Ak

therefore dg.CI h k

But rlk iledfx.hn k if dfxinx 1
so ds ish dx x hx 1



Example

0 27 R Z IR

1 F Th Q trivalent tree

Th D 4 valut tree

trivalent 4 valut trees are go
exercise find an explicit qi
Fs Th Q trivalent tree

F F3

exercise Find an explicitquasi isometry



Sv are Milnor gives us a way to prove
groups are quasi isometric

How can you proe they are not quasi isometric

eg Is 272 To 27

Weknow 272g 113 22go R

Claim It is not qi to R

proof suppose f IR IR is a

quasi isometry with X C se

I d x g c ed fan tag Aday to

If d lo x 3 3 LHYd fro fax 2C

If dexix s f RHS defo fast 20

I



Let x y lie outsideBsac and connect them by
a path outsideBye chopped into pieces of size E

fi I_g6I.t.s

Then every piecemapstothe same sideof Bac
so fax fly are on the soul side of Bac

f is not quasi surjective

This is a special case of the phenomenon that
quasi isometric spaces have the
same numberof ends



Cayleygraphs
To use S M need a proper geodesic
metric space with a G action G acts on

Gds but Gds is not geodesic

However Given any G with generating
sets we can define the Cayleygraph 6 Gs
Y vertices elements of G

edges There is an edge joining g
and h

whenever hags for sone s e S

standard assumptions
x ee S so there are no loops in 8 G S

x If s es then 5 t s unless its

If d ee get 2 edges 4 and gs

Note every vertex has two adjacent
edges labeled s for each s e S

not
s

Misa
unique solution hags



Make 616 s into a metric space by malay
every edge Banetric to EOM C IR
this allows youto compute the length
of a path then define d Gay
length of shortest path x toy

G acts freely antre left on 6 Gs

g
at eggs

For ge G write gas saz ok for sie Sus
Then there is a path in E 6 s oflength
K from 1 to g

1 Aj
mt sing

so S generates 66,5 isconnected

conversely if deco s l g k then

g bi A k

so d s gin doll gh decay CI g h

deco s g h

And the action of G on 6 GS is by isometries



the inclusion G G G S is
a
quasi isometry

Rot it is an isometricembedding
and quasi surjective

There is also a directed version of
Cagley graphs where you put an arrow

Eggs
Peopleusingthis version usually assure 5 5
Then there are 2 edges between each pairof
adjaint vertices hot gigs n



The action of G on b Gis is free
and cellular so proper exercise

It is also compact translates of
the closed ball ofradius 1 around ee
corer 816 s

a
ygÉ.gs

É go

So if Sis finite we have a proper cocompact
action on a geodesic metric space and we
could also apply Suave Milnor to conclude

616,5 is q.i.to Gds

Exampled G 27 52 5 913 t
Lift

MEEEEE Intr

Different generating sets often givedifferent
Cayley graphs
G Z S 2,3



6 272 5 34,07 co is

i i i i

m a o e r

o o o n n

o o s o

G Flab S a b

bo oba
ab

a at a

b o ba

G Flab S a ab
b b a'a

o a ba

ab ab
a at an oar

1

Ift
b ba



G 27 22 1 1st 5 9 3

ftp.t
6 27 22 2727 S t s

Ytl 14s

Est ts t I s se St's

Different groups can have isometric

Cayley graphs
Examples

22 8 4 1

3 2 Y O 1 2 3

G G finite noeltsof order 2 161 1011
For stake all elements of G thenthrow'entone

ofeachpair's I Ten 6 G S is the completegraph on
101 elements

Do the same thing for G Then 616,5 616,5



An example usingminimal generatiysets
ar er

24 272 664 722,5 e u w

sis is s in
5 34,0 I 43

rs pas

Dg symmetriesof a GCD S r e

square ar

1 ore

v41 SEI

5 ris



Application to quasi isometry
G finitelygenerated by 5 6 616 S

Suppose Its G has trite index and let
goesgro i go be a set of cosetrepresentatives
It also acts properly free andcellular
andH translates of K Y ginBated
cover 6 G S so the action is cocompact
Therefore by to

Suarc Milnor Lemma

H Y G GS G

so we've proved

Proposition Let G be a finitely generated

group
and H E G a finite index subgroup

Then It is quasi isometric to G



Ends of a metric space

Definition Let X be a proper geodesicmetric space
and to e X
let Bu Bu xo a ball of radius n

Each Bn is compact and IoBn X

An end of X is an infinite sequence
E C 2622

where each Cn is a non O connected component

of X B

note that Cn determines Ci Ca Cn i



If C s Cio is a sequence ofcomponents
of X Bilko for some to to

then it determines a unique end CpG as

follows

For each n F in st m r Balto e Baldo

X Baixo X Bm x

F component Cn E X Balto
containing Cin for all my rn

so theend E C Ez is determined

by Ci cis



Example X T infinite trivalent tree

I
ÉtÉE

C 0 Go 92 i a geodesic

ray going out to
a che red pata

Ty has infinitely many ends

ÉÉ

It It

E

Dirt geodesic rays but same end E



Theorem Let X be a proper geodesic metric

space The
numberof ends ofX is a quasi isometry

invariant

Proof Given a q u X Y

CIfa

t dfx x es dykes fan sad t C

Fix N so pick to ex let yo fao
and take M Ntc

Then
dex xo r X Mrc d fix yo Ida xo c m

BN

and d x x E Mif Ce o

d tax far M N



Now suppose x x are inthesame component of X B
and d xx c e

If fix and f x are in different components of
Y BI yo then doffed fix 2 M N

fax

É Ii
IIIa

so If x y are in te sane component Ur Y X Br
connect themby a path divide thepathinto pieces
of size E conclude fly fly are

in the save compuent of Y BN
Now f Br C Barelyo so we can conclude

ends X ends Y is surjective

If not can find a pointy in someend ofY
that is arbitrarily far from f x contradicting
the fact that f rs quasi surjective



Y

f Ui

If ends is Smile toy are te sone
Otherwise they are both infinite

Theyhave the same cardinality

Caf Fn 8 22 if n 2

infact Fn x 2k if n 2 k 22

If Fugit which has infinitelymany ends

27 Yo IR whichhas two ends

27 ng
112k which has read it 432

Q is 2 ng
273 A no butyoucan't

tell bycounting ends



theorem Stallings A finitely generated group
G

has O I 2 or infinitely many ends

proof Suppose 6 6 GS has 2sec a ends

g e G g b b is an isometry

so permutes the finite number of ends

Let N Ker G E ends

g g
N fixes the ends and has finite index in G
so is quasi isometric to.G in particular
N has the same number of ends as G

ie we may assume G fixes the ends of G

Take r bigenough so 6 Br has 33 components
80Take 80,8 Or geodesics

going far into eachend

let t t beparamaters wit

y1
II

If rocs
d r Ctl 1

2ndtact 1 ar s

If s t s t then d 8 s 8 sd 2 r



Take
ge to with del g 3 r

c

apply g to nd

Thee is s t with gals eBr
There is s t withgristleBr
so d grits grisi s 2m

But d grist go.si dCs csl 8 s ar



Presentations and Cayley complexes

Presentations Anotherway to say
G is generated by S G is

that the homomorphism f FCS G

extending the inclusion S G
whichexistsbythe universal property is onto
Then the 1st isomorphism theorem says

G E F CIN
where N a kerf Fis

N is a normal subgroup ie if we N
and u e f s then u w W E N

Datin N is normallygenerated by R
C F s

if R and all conjugates of elements

of R generateN
Write N 4125 If N is normallygenerated
byR then S and R completely determine G

We write G S R this is called a
presentation for G



Remarks

Every group has a presentation
take S G R all words
in Ker FCS G

Groups have lots ofdifferent presentationsdifferent generatingsets for G
different normalgon sets fr N

Knin G is finite presented if G S R
with Iska and IRI ca

examples F s s

Cn Lt I try
272 er ez e ezeyes
Notation e e eyes a.ee

2 es en f Cei e forall is

I La la



A presentation completely determines a group
but it is not always easy

to tell which group

Example

La bl a bab b'a boy 1

Dehn's isomorphism problem

Is there an algorithm to decide whether
two finite presentations give isomorphic
groups

Answer No there is no algorithm
that can decide for all
pairsof finite presentations
But if you have more information about the

groups
there

may
be an algorithm



Cayley complexes

Suppose G has a finite presentation S R
let Ps be the

oriented rose with one petal
2

for each s e S
sq Ps

Vankampen attaching a 2 cell with
boundary w to the rose kills w in

ti so also kills all conjugates of w

let X X G S R he he space obtained by
attaching a 2 cell to ps for each war

The map inducedby inclusion Pse X
Fa Ps F X

is surjective andits kernel is normally
generated byR ie Th X G

Theuniversalcovert is the Cayley complex 6 G S R

It can be made into a propergeodesic
metricspace

by makingeach lift of a 2 cell killing w oflength k
isometric to a regular Euclidean k gon



with side length 1 if K 2 use a disk with
circumference 2 If
eg G 222 S a b Re aba't

X GSR u aF a

TER

Eloisa

G acts freely and co compactly by isometries
on 6 G S R so by Suave Milnor
6CGS R is quasi isometric to G

The 1 skeleton
g
6 G S R is

the Cayley graph 66.5



Example 6 2212 St E

Presentation complex It u FE Gap

universal cover NII u If u If
Es

Example G 21m27 e tht

Presentationcaplex IF U t

f 52 cells each withUniersalcoer

t.fi fyhesamedNT

Cayleycomplex

Example 6 27122 2 227 sit 5,17
Presentation conplex of u u

t

Universal cover

Cayley complex



Advantages of 6 G S R an 616,8

61615,12 togetherwith its action of G
contains all information about G

since you can recover G from it

G ECG Sir
whereas you can only recover quasi isometry
in variant'sof G from 6 a s and
its actionha G



 
Surface groups

Eg Closed orientable surface of
genus g

1

Th Eg is called a surface group

9 1 Ʃ T S S

It Ʃ 22 a b ab a b 1

b

Presentation
uan na

complex
b

Cayley complex

Cayleygraph

Cayley aplex is filed by squares of side length 1

and is isometric to 112
i



The same topological picture holds for surfaces
of genus 2

I g Carbis ag.bg Cai bJCazbaJ Cagbg 1

Eg 9 2
a b c d aba b cdi d 1

U at 1

so theCayleycomplex 2 is tiled byoctagons
8 ofthem meet at every vertex and Ʃ acts

by translating her award

Ʃ is a simply connected surface so is

homeomorphic to 112 or 8

T E 229 so Ez is infinite

Sine it acts freelyandproperlyon Ez Ez can't be s



So Ez is homeomorphic to R

But youcantmake it isometric to IR you can't
tile 1122 with isometric octagons ofanyshape

E angles be
i

But you say tile the hyperbolic plane
by isometric octagons bymany different
shaped octagons in fact

And there is nothing special about octagons

you can tile HR by n gas for any n 5 1

Forexample you can tile HI by regular
octagons

all sides hae sue lyta all interior angles
are

So angles at anyvertex 25



We talked about the actionof Shaz on the upper
half space Hl z Im z o givenby ad z.EE d

With the metric of Tey this is onemodel for
the hyperbolic plane
With this metric the actionof SL227 isby isometries
called Mobius transformations

Bat to see the tilingof Ig by 4g gons it is
more convenient to use the Poincaré disk model
ID This is the interior of the unit disk in IR
with the metric f The map

f HI D de
z EET

is an isometry

Geodesics in D are

circle arcs 1 to St
and straight lines

through te algin

Isometries are generated by inversions in circles
and there's an orientation preserving isometrytaking

any geodesic to any
other geodesic and any

point to any other point



To find a regular octagon

on ID with all anglesEy
take points on these rays
at distance r from 0

It r is small Fa is

almost ds theoctagon
is almost Euclidean so

has angles almost 34
in IR

G Tl 8 d so

2 34
R

If r is closeto d theangles
1 are almost O



So somewhere in betweenthey
are So 8ofthem fit

MEE avand eachvertex see

picture on last pageofnotes
and translates tile ID

ie Ez can be identified
with ID

I Ʃ acts freelybytranslaty te octagons around and
translates cover ID so the action is cocompact
Thereforeby Siarc Milnor I 2g is quasi isometric
to ID ie distances in EgCwith anywordmetric
can be approximatedby distances in ID

MaxDehn usedintuition from this picture to answer

some fundamental questions about surface groups
For example
The hyperbolic plane has a linear isoperimetric
function the minimal area needed to fill a simpleclosed
loopoflength n with a disk is linear in n

Dehn found an algorithm to decide whether a word

in the standard generators is trivial and
showed the number of relators you need to use

to prove a word is trivial is linear in the length of
the word



Healso found algorithms to decide whether two
words were conjugate and whether two
presentations of surface groups determined the
same surface group

We are interested in classifying groups
up to quasi isometry

Gromov singled out certain geometric features

of D and proved they were quasi
isometry invariants
He proved that groups with these features

satisfy many of the same properties
as surface groups and called
them hyperbolic groups b

These features include
geodesictriangles are thin

a

There are many ways to say this Oneway
there is a constant 8 log3 such that Ifeach side is contained in a

d neighborhood of the other
2 sides thetriangle is Itala



Geodesics doerge exponentially fast ie
0 there is a constant Cso satisfying

qÉ If Xie85 alxi ol r let
dr xuxa be the length of the
shortestpath from x to Xz that

stays outside Br o

then drTx x2 3 Or

There is a constant C 0 satisfying
It a ball in ID is disjoint from
a geodesic its projection onto the geodesic
has length E C

It turns out that any proper
geodesic metric space satisfying

also satisfies and

so we will use to define
the notionof hyperbolicmetricspace




