Please let me (Saul) know if any of the problems are unclear or have typos. Please turn in Exercise 7.5 (via Moodle) by noon on Friday of week nine (2025-03-07).

In the following problems (X, d_X) is a proper geodesic metric space.

Exercise 7.1. Prove that X is complete.

Exercise 7.2. Suppose that $\Delta \subset X$ is finite and non-empty. Let $Cen(\Delta)$ be the set of outcentres of Δ .

- 1. Prove that $Cen(\Delta)$ is non-empty.
- 2. Suppose that h is an isometry of X. Prove that $h(\operatorname{Cen}(\Delta)) = \operatorname{Cen}(h(\Delta))$.

Now suppose that (G, S) is a finitely generated group. Let $\Gamma_S = \Gamma(G, S)$ be the resulting Cayley graph.

Exercise 7.3. Suppose that F < G is a finite subgroup. Prove the following.

- 1. The action of F on Γ_S (by left multiplication) preserves $\operatorname{Cen}(F)$. Furthermore, the action of F on $\operatorname{Cen}(F)$ is *free*: if $f \in F$ fixes some $g \in \operatorname{Cen}(F)$ then $f = 1_G$.
- 2. Suppose that h lies in G. Then hFh^{-1} preserves, and acts freely on, Cen(hF).

Exercise 7.4. Suppose that X is δ -hyperbolic. Suppose that $k \ge 4\delta$. Suppose that n > 0. Suppose that $\alpha: [0, n] \to X$ is a k-local geodesic. Prove that

$$\frac{n}{k/2} \le d_X(\alpha(0), \alpha(n)) \le n$$

Exercise 7.5. Suppose that

$$G = \langle S \mid R \rangle = \langle a, b, c, d \mid abcda^{-1}b^{-1}c^{-1}d^{-1} \rangle$$

Prove that this is a Dehn presentation. [This was only sketched in Lecture 20 – provide the details.]

Exercise 7.6. Suppose that $G = \langle S | R \rangle$ is a Dehn presentation. Give a linear-time algorithm for the word problem in G.